
Introduction to Algorithms March 12, 2008
Massachusetts Institute of Technology 6.006 Spring 2008
Professors Srini Devadas and Erik Demaine Quiz 1 Solutions

Quiz 1 Solutions
Problem 1. Asymptotic workout [15 points]

For each function f(n) along the left side of the table, and for each function g(n) across the
top, write O, Ω, or Θ in the appropriate space, depending on whether f(n) = O(g(n)), f(n) =
Ω(g(n)), or f(n) = Θ(g(n)). If more than one such relation holds between f(n) and g(n), write
only the strongest one. The first row is a demo solution for f(n) = n2.

g(n)

n n lg n n2

n2 Ω Ω Θ

n1.5 Ω Ω O

√
2n Ω Ω Ω

f(n)

n
√

lg n Ω O O

n log30 n Ω Θ O

n3 Ω Ω Ω

6.006 Quiz 1 Solutions Name 2

Problem 2. Table of Speed [20 points]

For each of the representations of a set of elements along the left side of the table, write down the
asymptotic running time for each of the operations along the top. For hashing, give the expected
running time assuming simple uniform hashing; for all other data structures, give the worst-case
running time. Give tight asymptotic bounds using Θ notation. If we have not discussed how to
perform a particular operation on a particular structure, answer for the most reasonable implemen-
tation you can imagine.

Operation

Insert Extract-min Contains Minimum

Θ(1) Θ(n) Θ(n) Θ(n)
Unsorted Insert at Check every Check every Check every
linked list beginning element element element

Θ(n) Θ(1) Θ(n) Θ(1)
Sorted Walk down Remove first Walk down Return first
linked list list element list element

Data Θ(log n) Θ(log n) Θ(n) Θ(1)
Structure Min heap Seen in Seen in Check every Return first

class class element element
Θ(log n) Θ(n) Θ(n) Θ(n)

Max heap Seen in Check every Check every Check every
class element element element

Hashsing with Θ(1) Θ(n) Θ(1) Θ(n)
chainig and Seen in Check every Seen in Check every
α = 1 class element class element

Definitions of operations:

• Insert(S, x): add element x to the set S.

• Extract-min(S): remove the minimum element from the set S and return it.

• Contains(S, x): return whether element x is in the set S.

• Minimum(S): return the minimum element in set S (without extraction).

6.006 Quiz 1 Solutions Name 3

Problem 3. Indie heap operations [15 points] (2 parts)

(a) [10 points] Suppose you have a max-heap stored in an array A[1..n], where A[1] stores
the maximum element. Give pseudocode for an efficient algorithm to implement the
operation find-second-maximum(A), which finds the next-to-largest key stored in the
max-heap A. Your algorithm should not modify the heap.

Solution:

return max(A[2], A[min(3,n)])

(b) [5 points] Suppose you have an array A[1..n] of n elements in arbitrary order. Does
the following alternate implementation of build-max-heap work? In other words, does
it correctly build a max heap from the given elements A[1..n]? Why or why not?

build-max-heap(A):
for i from 1 to n/2:

max-heapify(A, i)

This algorithm calls heapify starting at the root and working its way down the tree,
instead of the other way around.

Solution: No. Starting with [1, 2, 3, 4] we would get [2, 4, 3, 1], which is not a max-
heap.

6.006 Quiz 1 Solutions Name 4

Problem 4. Madly merging many menus [30 points] (2 parts)

Professor Sortun uses the following algorithm for merging k sorted lists, each having n/k elements.
She takes the first list and merges it with the second list using a linear-time algorithm for merging
two sorted lists, such as the merging algorithm used in merge sort. Then, she merges the resulting
list of 2n/k elements with the third list, merges the list of 3n/k elements that results with the
fourth list, and so forth, until she ends up with a single sorted list of all n elements.

(a) [10 points] Analyze the worst-case running time of the professor’s algorithm in terms
of n and k.

Solution: The ith merge has one list of size i∗n
k

, so it takes Θ(i∗n
k

) time. Adding up
each merge, we get:

T (n) =
k∑

i=1

i ∗ n

k

T (n) = Θ(kn)

6.006 Quiz 1 Solutions Name 5

(b) [20 points] Briefly describe an algorithm for merging k sorted lists, each of length
n/k, whose worst-case running time is O(n lg k). Briefly justify the running time
of your algorithm. (If you cannot achieve O(n lg k), do the best you can for partial
credit.)

Solution: Put the minimum element of each list into a min-heap. Then, repeatedly
extract the minimum element from the heap, and replacing it by inserting the next
element from the same list.
The heap will never be bigger than k elements, so each operation (either extract-min or
insert) takes O(lg k) time. There are O(n) operations (one insert and one extract-min
for each element), so the running time is O(n lg k).

6.006 Quiz 1 Solutions Name 6

Problem 5. Being Adel’son-Vel’skiı̆ & Landis [10 points]

Suppose that we insert 42 into the AVL tree below using the AVL insertion algorithm. On the next
page, show the resulting tree after rebalancing. We also recommend showing intermediate steps
for partial credit.

60

30

70 9510

20

50 90

40

99

75

For reference, we include the Python code for AVL insertion, written in terms of rotations:

def insert(self, t):
node = bst.BST.insert(self, t)
while node is not None:

if height(node.left) >= 2 + height(node.right):
if height(node.left.left) >= height(node.left.right):

self.right_rotate(node)
else:

self.left_rotate(node.left)
self.right_rotate(node)

elif height(node.right) >= 2 + height(node.left):
if height(node.right.right) >= height(node.right.left):

self.left_rotate(node)
else:

self.right_rotate(node.right)
self.left_rotate(node)

node = node.parent

Solution: First, 42 gets inserted, hanging as a left child of 50. Then, 20 is unbalanced, so it is
rotated left. 40 takes the place of 20, 20 becomes the left child of 40, and, 30 becomes the right
child of 20.

Note: the actual solution requires a picture.

6.006 Quiz 1 Solutions Name 7

60

30

70 9510

20

50 90

40

99

75

Initial AVL tree

6.006 Quiz 1 Solutions Name 8

Problem 6. Honey, I shrunk the heap [15 points]

Suppose we have a heap containing n = 2k elements in an array of size n, and suppose that we
repeatedly extract the minimum element, n times, never performing insertions. To make the heap
space efficient, we move the heap over to an array of size 2j whenever an extraction decreases the
number of elements to 2j for any integer j. Suppose that the cost of each such move is Θ(2j).
What is the total movement cost caused by n extract-mins starting from the heap of n elements?
(Ignore the Θ(n lg n) cost from the heapify operations themselves.)

Solution: The first move occurs when the number of elements is 2(k−1), and the ith move oc-
curs when the number of elements is 2(k−i). Total number of movements is k, and total cost is∑0

j=k−1 2j = 2k − 1 = Θ(2k) = Θ(n)

6.006 Quiz 1 Solutions Name 9

Problem 7. Trash hees [15 points] (2 parts)

Suppose we store n elements in an m-slot hash table using chaining, but we store each chain (set
of elements hashing to the same slot) using an AVL tree instead of a linked list. Also suppose that
m = n, so the load factor α = n/m = 1.

(a) [5 points] What is the expected running time of insert, delete, and search in this hash
table? Why? Assume simple uniform hashing.

Solution: Assume uniform hashing and use linked list, all the operations take O(1+
α) time, O(1) for applying hash function and access the slot, and O(α) is for inserting,
deleting, and searching in this list. Using AVL tree, we can reduce the term O(α) to
O(lg α). In this case,we have load factor α as 1, so all the operations cost O(1+lg 1) =
O(1) time.

(b) [10 points] What is the worst-case running time of insert, delete, and search in this
hash table? Why? (Do not assume simple uniform hashing.)

Solution: In the worst case, every element ends up in the same slot. Replacing O(α)
in part (a) by O(n), all operations cost O(1 + lg n).

SCRATCH PAPER

SCRATCH PAPER

