
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology March 7, 2008
Professors Srini Devadas and Erik Demaine Handout 5

Problem Set 3

This problem set is due Thursday March 20 at 11:59PM.
Solutions should be turned in through the course website in PDF form using LATEX or scanned
handwritten solutions.
A template for writing up solutions in LATEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct solution
which is described clearly. Convoluted and obtuse descriptions might receive low marks, even
when they are correct. Also, aim for concise solutions, as it will save you time spent on write-
ups, and also help you conceptualize the key idea of the problem.

Exercises are for extra practice and should not be turned in.
Exercises:

• CLRS 6.1-3 (page 130)

• CLRS 6.2-1 (page 132)

• CLRS 6.3-1 (page 135)

• CLRS 6.4-1 (page 136)

• CLRS 6.4-3 (page 136)

• CLRS 6.5-4 (page 141)

• CLRS 8.2-2 (page 170)

• CLRS 8.4-1 (page 177)

1. (12 points) Heap Delete

In this problem you will implement an additional operation in a min heap. Namely,
heap.delete(i) deletes the item at index i in the array.

Download ps3 heap.zip. In heap delete.py, which inherits from the code in heap.py,
implement delete(i). Your code should run in O(log n) time where n is the number
of nodes currently in the heap.

The added code doesn’t need to be more that a couple lines, but be sure to add
comments explaining why it works.

Run test heap delete.py to help determine if your new delete method works, and
submit heap delete.py to the class website.



2 Handout 5: Problem Set 3

2. Monotone Priority Queues

A “monotone priority queue” (MPQ) is a (max) priority queue that only allows mono-
tonically decreasing elements to be extracted. It supports the following operations:

• Max(Q): Returns the key of the most recently extracted node. If no nodes have
been extracted, returns ∞. This does not modify the MPQ.

• Extract Max(Q): Removes and returns the maximum node currently in Q, and
updates Max(Q). If Q is empty, returns Max(Q).

• Insert(Q, x): Inserts x into Q given that x ≤ Max(Q). If x > Max(Q), then the
MPQ is not modified.

When asked to “describe an implementation”, you may start with something already
proven in class or in the book, and simply describe modifications to that.

(a) (9 points) Describe an implementation of a monotone priority queue that takes
O(m log m) time to perform m operations starting with an empty data structure.

Solution:

Simply start with an ordinary max heap priority queue, and modify it for the new
functionality. Keep track of Max(Q) separately. On insert, do an extra check to
see if the new element is bigger than Max(Q). On Extract Max(Q), update the
Max(Q). All operations still take the same O(log m) time, because the heap has
at most m elements, so in total, at most O(m log m) work is done.

(b) (9 points) Now suppose that every inserted key x is an integer in the range [0, k]
for some fixed integer value k. Describe an implementation of such a monotone
priority queue that takes O(m + k) time to perform m total operations.

Hint: Use an idea from Counting Sort.

Warning: Be careful about the case when the queue becomes empty.

Solution:

Use an array A, where A[i] stores the number of elements with key = i currently
in the queue. Again, the max is stored separately. Inserting takes O(1) time (if
the key is less than the max, increment A[key]). Extracting the max is done by
starting at the previous max in the array, and trying every lower slot until one is
found that isn’t empty. Over the lifetime of the queue, we will only walk down
each slot once, and the rest of the work done is constant time.

We need to be careful that when the queue is empty, if we try to extract max then
we don’t waste time walking down slots in the array, so instead we separately keep
track of the size of the array. This way we can figure out in O(1) time whether
the queue is empty.



Handout 5: Problem Set 3 3

3. Gas Simulation

In this problem, we consider a simulation of n bouncing balls in two dimensions inside
a square box. Each ball has a mass and radius, as well as a position (x, y) and velocity
vector, which they follow until they collide with another ball or a wall. Collisions
between balls conserve energy and momentum. This model can be used to simulate
how the molecules of a gas behave, for example. The world is 400

√
n by 400

√
n units

wide, so the area is proportional to the number of balls. Each ball has a minimum
radius of 16 units and a maximum radius of 128 units.

Download ps3 gas.zip from the class website. For the graphical interface to work,
you will need to have pygame or tkinter installed. They currently run slightly different
interfaces. Feedback is appreciated.

You may notice that performance, indicated by the rate of simulation steps per second,
is highly dependent on the number of balls. Your goal is to improve the running time of
the detect collisions function. This function computes which pairs of balls collide
(two balls are said to collide if they overlap) and returns a set of ball pair objects for
collision handling. You should not need to modify the rest of the simulation. (If you
think something else should be modified, e-mail 6.006-staff with your feedback.)

(a) (2 points) What is the running time of detect collisions in terms of n, the
number of balls?

Solution: Θ(n2)

(b) (6 points) Argue that the following algorithm is asymptotically faster:

Divide the world into square bins of width 256. For each ball, put it in its
appropriate bin. Then for each bin, check for collisions where either both balls
are in the bin, or one ball is in the bin, and the other ball is in an adjacent bin.

Solution: Each ball can be put in a bin in constant time, so binning the balls
takes time O(n).

Each bin can hold at most a constant number of balls (because every ball has a
minimum radius, and each bin has a finite radius). So checking a ball for collisions
within a bin, and within neighboring bins, requires checking against at most O(1)
other balls. Thus, the total time required to check every ball is still O(n).

(c) (20 points) Implement the detect collisions algorithm described in part (b).
Put your code in detection.py, and uncomment the line in gas.py just below
detect collisions that imports your new code.

Your new code must still find all the same collisions found by the old code (any
pair of balls for which colliding returns true). To check that you are detecting
the same collisions, run your code and the original code with the same parameters,
and make sure that they detect the same number of collisions.

In your documentation, do not assume that the reader has read this problem set.

Submit detection.py to the class website.



4 Handout 5: Problem Set 3

(d) (2 points) Using your improved code, after 1000 timesteps with 200 balls, how
many collisions did you get? How many simulation steps per second did you run?
How many simulation steps per second could you run with the original code and
the same number of balls?


