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Problem Set 2

This problem set is due Thursday March 6 at 11:59PM.
Solutions should be turned in through the course website in PDF form using LATEX or scanned
handwritten solutions.
A template for writing up solutions in LATEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct solution
which is described clearly. Convoluted and obtuse descriptions might receive low marks, even
when they are correct. Also, aim for concise solutions, as it will save you time spent on write-
ups, and also help you conceptualize the key idea of the problem.

Exercises are for extra practice and should not be turned in.
Exercises:

• CLRS 11.2-1 (page 228)

Solution: Each pair has a 1
m

chance of colliding, and there are
(

n
2

)
= n(n−1)

2
pairs.

Multiplying, we get the expected number of collisions: n(n−1)
2m

• CLRS 11.2-2 (page 229)

Solution: Left for the reader.

• CLRS 11.3-1 (page 236)

Solution: Hash the key. Walk down the list comparing against the hashes. Only
compare the actual strings if the hashes match.

• CLRS 11.3-3 (page 236)

• Prove that red-black trees are balanced, i.e., if a red-black tree contains n nodes, then
its height is O(log n). Red-black trees are binary search trees satisfying the following
properties:

When a node does not have a left (or right) child, we say it has a NIL pointer instead.

1. Each node is augmented with a bit signifying whether the node is red or black.

2. If a node is red, then both of its children are black.

3. The paths from the root to any NIL contain the same number of black nodes.
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1. (12 points) select in Binary Search Trees

Implement select in bstselect.py. select takes an index, and returns the element
at that index, as if the BST were an array. select is essentially the inverse of rank,
which took a key and returned the number of elements smaller than or equal to that
key. The index for select should be 1-based (not 0-based like Python often uses).

Download ps2-bst.zip. Read test-bst.py to clarify how select should work. Put
your code in bstselect.py until test-bst.py works. Be sure to comment your code,
explaining your algorithm.

Submit bstselect.py to the class website.

Solution: The optimal solution takes O(h) time, where h is the height of the tree.
Assuming balanced binary trees, like the AVL tree described in Lecture 4, h = O(log n),
so the solution will take O(log n) time.

The key observation is to augment the BST so that each node keeps track of the
size of its subtree (1+ the number of descendants). We have provided the algorithm
and a sample implementation for doing this in Recitation 4. The code supplied with
the problem set also provides an implementation of BSTs augmented to keep track of
subtree size, in bstsize.py.

The algorithm works as follows. Let root be the root of the tree, and let i be
the rank of the node that we are trying to select. The root’s rank is r = 1 +
bstsize.size(root.left), because all the nodes in the root’s left subtree are smaller
than the root, and all the nodes in the right subtree are larger than the root (by
definition of the BST).

(a) i = r: the root is the node we are looking for, so we can return the root. We are
done.

(b) i < r: the node we are looking for belongs to the root’s left subtree, so we can
reduce the problem to finding the ith node in the root’s left subtree.

(c) i > r: the node we are looking for belongs to the root’s right subtree, so we can
reduce the problem to finding the (i − r)th node in the root’s right subtree.

Every time the problem is reduced to a smaller one, we go one level deeper in the tree.
Therefore, the number of steps taken until we reach a leaf is O(h).

There are also several sub-optimal ways to implement bstselect.

(a) Enumerating the first i nodes; the first node is obtained by calling minimum, then
successor nodes are obtained via calls to successor. This method takes O(i)
time. Since i can be any number from 1 to n, the worst-case running time is
O(n).
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(b) Enumerating nodes until the ith is reached; this follows the plan of the previous
method, except it uses bstrank.rank to determine the rank of each enumerated
node. This adds a O(log n) factor to the enumeration time, for a total time of
O(n log(n))

Partial credit was awarded to suboptimal solutions that were explained well.

2. (10 points) Amortization

You are given an m-bit binary counter, where the rightmost bit is the “1’s” digit, the
next bit is the “2’s” digit, the next bit is the “4’s” digit, and so on, up to the “2m−1’s”
digit. The function increment adds 1 to the counter, carrying when appropriate.

Assuming that the counter starts at 0, prove that increment takes O(1) amortized
time. In other words, show that after n operations, the total amount of time spent is
O(n). For simplicity, assume that the only operation that takes any time is flipping a
bit in the counter.

Solution:

CLRS gives extensive coverage of this problem (with 3 different solutions) in Sections
17.1, 17.2, and 17.3.

A brief solution is obtained by analyzing the total cost (number of bit flips) for n
increment operations. The key observation is that the “1’s” digit is flipped every time,
the “2’s” digit is flipped once every 2 increment operations, and so on. Generally, the
“2r’s” digit is flipped once every 2r increment operations.

The total number of bit flips for an m bit counter is obtained by summing the number
of increments over all m bits. As explained above, bit r is flipped once every 2r

increments, so it is flipped b n
2i c times over n increment operations. The summation

over all m bits is bnc + bn
2
c + b n

22 c + · · · + b n
2lg n c.

An upper bound for the summation above is the geometric sum n+ n
2
+ n

22 + · · ·+ n
2lg n ,

which is, in turn, bounded by the infinite geometric sum n
( ∑∞

1
1
2i

)
= 2 · n

In conclusion, n increment operations take ≤ 2 · n = O(n) bit flips. This means that

the ammortized cost per increment is O(n)
n

= O(1).

3. (12 points) Collision resolution

For parts (a) through (c), assume simple uniform hashing.

(a) (3 points) Consider a hash table with m slots that uses chaining for collision
resolution. The table is initially empty. What is the probability that, after three
keys are inserted, there is a chain of size 3?

Solution: Let h be the hash function used. A chain of size 3 can only be
created if the hash function maps all 3 keys to the same slot in the hash table.
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The corresponding equation is h(k1) = h(k2) = h(k3). So the probability of having
a size 3 cluster is:

Pr[h(k1) = h(k2) = h(k3)] = Pr[h(k1) = h(k2) ∨ h(k2) = h(k3)] (1)

= Pr[h(k2) = h(k1)] · Pr[h(k3) = h(k1) | h(k2) = h(k1)]
(2)

= Pr[h(k2) = h(k1)] · Pr[h(k3) = h(k1)] (3)

=
1

m
· 1

m
(4)

=
1

m2
(5)

The first step breaks down the equation. The second step follows from the
definition of conditional probability (taught in 6.041 and 6.042). The third and
fourth steps take advantage of the fact that, under simple uniform hashing, a
key is equally likely to hash to any slot in the hash table, and this probability is
independent of the other keys in the hash table. The rest is algebra.

(b) (3 points) Consider a hash table with m slots that uses open addressing with
linear probing. The table is initially empty. A key k1 is inserted into the table,
followed by key k2. What is the probability that inserting key k3 requires three
probes?

Solution: Inserting k3 requires 3 probes iff the first 2 probes hit slots that are
taken, and the 3rd probe finds an empty slot. The table contains 2 keys when k3

is inserted, so the first 2 probes must hit the slots holding those two keys. If this
happens, the 3rd probe is guaranteed to find an empty slot (there are no other
keys in the table).

We are analyzing linear probing, so insertions probe consecutive slots. The first 2
probes in k3’s insertion must hit the slots holding k1 and k2, so k1 and k2 must be
stored in consecutive slots, and k3 must initially hash to the first of those 2 slots.

In order for k1 and k2 to be stored in consecutive slots, one of the following must
happen:

i. k2 is stored in the slot preceding k1. This happens if h′(k1) = h′(k2) +
1 mod m. Since we’re assuming h′ obeys simple uniform hashing, the proba-
bility for this to happen is 1

m
(h′(k2) must point to a specific slot).

ii. k2 is stored in the slot following k1. This happens if h′(k2) = h′(k1)+1 mod m,
or if h′(k2) = h′(k1) (in this case, linear probing dictates that the following
slot will be probed next). Each of these two events has probability 1

m
, for

the same reasons explained above. The events are mutually exclusive, so the
probability of either of them happening is 1

m
+ 1

m
= 2

m

The cases leading to k1 and k2 being stored in consecutive slots are mutually
exclusive, so the probability of this happening can be computed as 1

m
+ 2

m
= 3

m
.
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k3’s insertion will use 3 probes only if h′(k3) is the first of the two consecutive
slots. Since we’re assuming simple universal hashing, the probabiliy of this event
is 1

m
, and the event is independent with any events related to other keys.

Therefore, the probability of 3 probes on k3’s insertion is 3
m
· 1

m
= 3

m2 .

(c) (3 points) Suppose you have a hash table where the load-factor α is related to
the number n of elements in the table by the following formula:

α = 1 − 1

log n
.

If you resolve collisions by chaining, what is the expected time for an unsuccessful
search in terms of n?

Solution: We are analyzing a hash table which resolves collisions by chaning,
has a load factor of α, and uses a hash function that exhibits the properties of
simple uniform hashing. The notes for Lecture 5, as well as Theorem 11.1 in
CLRS, indicate that the expected time taken by an unsuccessful search in this
scenario is T (α) = O(1 + α). Plugging in α(n) = 1 − 1

log n
, we obtain:

T (n) = T (α(n))

= O(1 + α(n))

= O(1 + 1 − 1

log n
)

= O(2 − 1

log n
)

= O(1)

The last result is obtained by observing that 0 < 1
log n

≤ 1 for n ≥ 2.

(d) (3 points) Using the same formula relating α and n from part (c), if you resolve
collisions by open-addressing, give a good upper bound on the expected time for
an unsuccessful search in terms of n. For this part, assume Uniform Hashing.

Solution: We are analyzing a hash table which uses open addressing, has a load
factor of α, and uses hash function exhibits the properties of Uniform Hashing.
The notes for Lecture 7, as well as Theorem 11.6 in CLRS, indicate that the
expected time taken by an unsuccessful search in this scenario is T (α) = O( 1

1−α
).
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Plugging in α(n) = 1 − 1
log n

, we obtain:

T (n) = T (α(n))

= O
( 1

1 − α(n)

)
= O

( 1

1 − (1 − 1
log n

)

)
= O

( 1
1

log n

)
= O(log n)

4. (26 points) Longest Common Substring

Humans have 23 pairs of chromosomes, while other primates like chimpanzees have
24 pairs. Biologists claim that human chromosome #2 is a fusion of two primate
chromosomes that they call 2a and 2b. We wish to verify this claim by locating long
nucleotide chains shared between the human and primate chromosomes.

We define the longest common substring of two strings to be the longest contiguous
string that is a substring of both strings e.g. the longest common substring of DEAD-
BEEF and EA7BEEF is BEEF.1 If there is a tie for longest common substring, we just
want to find one of them.

Download ps2-dna.zip from the class website.

(a) (1 point)

Ben Bitdiddle wrote substring1.py. What is the asymptotic running time of his
code? Assume |s| = |t| = n.

Solution: Θ(n5). There are four nested for loops, which each account for a
factor of n, and inside the for loops, we use the slice operator (to take substrings),
which takes Θ(n) time. Also, even if the slice operator didn’t take Θ(n) time, the
comparison (==) operator also takes Θ(n) time.

(b) (1 point)

Alyssa P Hacker realized that by only comparing substrings of the same length,
and by saving substrings in a hash table (in this case, a Python set), she could
vastly speed up Ben’s code.

Alyssa wrote substring2.py. What is the asymptotic running time of her code?

1Do not confuse this with the longest common subsequence, in which the characters do not need to be
contiguous. The longest common subsequence of DEADBEEF and EA7BEEF is EABEEF.
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Solution: Θ(n3). k substring gets called n times. Inside k substring, each
for loop runs n times, and each iteration of the loop takes Θ(n) time (because of
both the slice operator, and the hashing to add to a set).

(c) (6 points) Recall binary search from Problem Set 1. Using binary search on the
length of the string, implement an O(n2 log n) solution. You should be able to
copy Alyssa’s k substring code without changing it, and just rewrite the outer
loop longest substring.

Check that your code is faster than substring2.py for chr2 first 10000 and
chr2a first 10000.

Put your solution in substring3.py, and submit it to the class website.

Solution: Only code needed submission.

(d) (16 points)

Rabin-Karp string searching is traditionally used to search for a particular sub-
string in a large string. This is done by first hashing the substring, and then
using a rolling hash to quickly compute the hashes of all the substrings of the
same length in the large string.

For this problem, we have two large strings, so we can use a rolling hash on both of
them. Using this method, implement an O(n log n) solution for longest substring.
You should be able to copy over your outer loop longest substring from part
(c) without changing it, and just rewrite k substring.

Your code should work given any two Python strings (see test-substring.py

for examples). We recommend using the ord function to convert a character to
its ascii value.

Check that your code is faster than substring3.py for chr2 first 100000 and
chr2a first 100000.

Put your solution in substring4.py, and submit it to the class website.

Remember to thoroughly comment your code, including an explanation of any
parameters chosen for the hash function, and what you do about collisions.

Solution: Again, only code needed submission.

Common mistakes:

• Putting all substrings of length k into a set or dictionary. This takes O(nk)
time and space. Instead, if you want a pointer back to a substring, you can
use the start-index of the substring.

• Using too small of prime for Rabin-Karp. The prime needed to be around
n to make a manageable number of collisions. Anything smaller led to too
much time wasted checking the actual substrings during collisions.

(e) (2 points)
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The human chromosome 2 and the chimp chromosomes 2a and 2b are quite large
(over 100,000,000 nucleotides each) so we took the first and last million nucleotides
of each chromosome and put them in separate files.

chr2 first 1000000 contains the first million nucleotides of human chromosome
2, and chr2a first 1000000 contains the first million nucleotides of chimpanzee
chromosome 2a. Note: these files contain both uppercase and lowercase letters
that are used by biologists to distinguish between parts of the chromosomes called
introns and extrons.

Run substring4.py on the following DNA pairs, and submit the lengths of the
substrings (leave more than an hour for this part):

Solution:
chr2 first 1000000 and chr2a first 1000000 836
chr2 first 1000000 and chr2b first 1000000 152
chr2 last 1000000 and chr2a last 1000000 247
chr2 last 1000000 and chr2b last 1000000 961

If your code works, and biologists are correct, then the first million codons of chr2
and chr2a should have much longer substrings in common than the first million
codons of chr2 and chr2b. The opposite should be true for the last million codons.

(f) Optional: Make your code run in O(n log k) time, where k is the length of the
longest common substring.


