
Priority queue & Heap

2008/3/7

Review L3: Runway reservation system

• Problem:
– Airport with single runway
– Reservation for future landings (insert)
– When plane lands, it is removed from the set

of pending events (extract-min)

37 41 46 49 56 time(t)

Reserved landing time

Review: the proposed solutions
Sorted array

Performance:
Insert: O(n)
Extract-min: O(1)

Dictionary

Performance:
Insert: O(1)
Extract-min: O(n)

Good for searching,
but not sorting

1 2 3 4 5
1

4

key value

2

3

5

BST

Performance:
Insert: O(h)
Extract-min: O(h)

h=logN

3

1 5

2 4

* One more possible implementation: heap

Review L8: Binary Heap

definition: A Nearly complete binary tree
Implementation: array!
Property: Max-heap property
Operations

Max-Heapify(A,i)
Maintain max-heap property of tree rooted at A[i]

Build-max-heap(A)
Convert an array A into a max-heap

Heapsort (A)
Sorting an array A

array

Binary Trees

• Binary search tree is a kind of binary tree.

left(x)

root

leaf leaf

leaf

right(x)

x

Parent(x)

– Where a node can have 0 (for the leaves) or 2 children
– all leaves are at the same depth

– A complete binary tree with N nodes has height O(logN)

Complete Binary Trees

height no. of nodes
0 1
1 2

2 4

3 8

d 2d

Array Implementation of Binary Heap

• For any element in array position i
– The left child is in position 2i
– The right child is in position 2i+1
– The parent is in position floor(i/2)

A

B C

D E F G

H I J

A B C D E F G H I J
1 2 3 4 5 6 7 80 …

Max-Heap-order property

• the value at each node is less than or equal to the
values at both its descendants

A max-heap

6

4 5

2 3 1

Not a max-heap

4

2 5

1 3 6

Review L8: Binary Heap

definition: A Nearly complete binary tree
Implementation: array!
Property: Max-heap property
Operations

Max-Heapify(A,i)
Maintain max-heap property of tree rooted at A[i]

Build-max-heap(A)
Convert an array A into a max-heap

Heapsort (A)
Sorting an array A

array

Max-heapify
6

4 5

3 1 2

0

4 5

3 1 2 0

4

5

3 1

2

5

4 0

3 1 2

Max-heapify(1)

Max-heapify(A,i)

Max-heapify(A,i) #maintain max-heap property of tree rooted A[i]
1. l<-left(i)
2. r<-right(i)
3. #compare the value with left child
4. if l<=heap-size(A) and A[l]>A[i]
5. then largest<-l
6. else largest<-i
7. #compare the value with right child
8. if r<=heap-size(A) and A[r]>A[largest]
9. then largest<-r
10. # do swap if necessary and hen call max-heapify again
11. if largest≠i
12. then exchange A[largest]<->A[i]
13. Max-heapify(A,largest)

Time: O(logN)

Review L8: Binary Heap

definition: A Nearly complete binary tree
Implementation: array!
Property: Max-heap property
Operations

Max-Heapify(A,i)
Maintain max-heap property of tree rooted at A[i]

Build-max-heap(A)
Convert an array A into a max-heap

Heapsort (A)
Sorting an array A

array

Build max-Heap

Max-heapify(A,3)

Length(A)=6

3

4 2

5 6

3

6 2

5 4

Max-heapify(A,2)

3

4 1

5 6 2

1

1 Max-heapify(A,1)

3

4 2

5 6 1

3

6 2

5 4 1

6

3 2

5 4 1

6

5 2

3 4 1

3 4 2 5 6 1

3 6 2 5 4 1

3 4 1 5 6 2

6 3 2 5 4 1 6 5 2 3 4 1

Build-max-Heap(A)

Build-max-Heap(A) #Convert an array A into a max-heap

1. heap-size(A)<-length(A)
2. for i<- length(A)/2 down to 1
3. do Max-heapify(A,i)

•Running time = O(n)

•* can also start from I to 1 down to length(A)/2, but that may
need more calls for the method “max-heapify”

Heap is used to implement a priority
queue, and runway-system is a kind of

priority queue

Priority queue
A priority queue is a data structure for maintaining a
set of elements with values called keys
Application:

Scheduling system (Runway system)
Main Operations:

Insert (A,k)
Insert an element with key k into the heap A

extract-max(A)
Return element with the largest key from heap A

increase-value(A,I,k)
Update the key of element A[i] to a new value , k.

Implementation
binary search tree
heap

insert

Insert 8

6

4 5

3 1 2

6

4 5

3 1 2 8

6

4

53 1 2

8

8

4

53 1 2

6

Insert(A,k)

insert(A,k) # Insert an element with key k into heap A

1. heap-size[A] <- heap-size[A] +1
2. i <-heap-size[A]
3. A[i]=k
4. # Insert it to next available position at the lowest level

5. While i>1 and A[parent(i)]<A[i]
6. # traverse a path from this node toward the root to find

a proper place until the max-heap property is maintained

7. do exchange A[parent(i)]<->A[i]
8. i<-parent(i)

Time: O(logN)

Priority queue
A priority queue is a data structure for maintaining a
set of elements with values called keys
Application:

Scheduling system (Runway system)
Main Operations:

Insert (A,k)
Insert an element with key k into the heap A

extract-max(A)
Return element with the largest key from heap A

increase-value(A,I,k)
Update the key of element A[i] to a new value , k.

Implementation
binary search tree
heap

extract-max

6

5 4

3 1 2

2

5 4

3 1

5 4

3 1 2

5

4

3 1 2

5

43

1 2

6

5

4

3 1

2
5

43

12

extract-max(A)

extract-max(A) #Return the largest key from heap A

1. max <- A[1]
2. A[1] <- A[heap-size(A)]
3. heap-size(A) <- heap-size(A)-1
4. Max-heapify(A,1)
5. return max

Time: O(logN)

Priority queue
A priority queue is a data structure for maintaining a
set of elements with values called keys
Application:

Scheduling system (Runway system)
Main Operations:

Insert (A,k)
Insert an element with key k into the heap A

extract-max(A)
Return element with the largest key from heap A

increase-value(A,I,k)
Update the key of element A[i] to a LARGER value , k.

Implementation
binary search tree
heap

Increase-key

6

5 4

3 1 7

5

6

3 1 4

5 6

3 1 4

7

7

6

5 4

3 1 2

increase-key(A,i,k)
increase-key(A,i,k) # Update the key of A[i] to a new value , k.

1. A[i] <-k
2. While i>1 and A[parent(i)]<A[i]
3. # traverse a path from this node toward the root to find

a proper place until the max-heap property is maintained

4. do exchange A[parent(i)]<->A[i]
5. i<-parent(i)

*Very similar to insert

Time: O(logN)

*Do max-heapify when decrease-key(A,I,k)

Compare two implementations of
priority queue

BST

Performance:
Insert: O(h)
Extract-min: O(h)

h=logN (if BST is balanced)

• Heap

Performance:
Insert: O(h)
Extract-min: O(h)

h=logN

3

1 5

2 4

5

3 4

21

Why is heap a better implementation of priority
queue than BST?

Heap is used for sorting arrays

Sorting

• Problem: Given an array A, return an
sorted array

3 4 1 5 6 2 6 5 2 3 4 1

3

4 1

5 6 2

6

5 2

3 4 1

Build-max-heap is not all

6 5 4 3 2 1

Delete 16 Delete 14

Delete 10 Delete 9 Delete 8

Heapsort (A)
[1,2,3,4,7,8,9,10,14,16]

Build-max-heap(A)

Heapsort(A)

Heapsort(A) #sort an array A

1. Build-max-Heap(A) # the heap is built in A

2. while heap-size(A)>1
3. max=extract-max(A)
4. A[heap-size(A)]=max

Time: O(NlogN)

Heapsort(A)

Heapsort(A) #sort an array A

1. Build-max-Heap(A) # the heap is built in A

2. for i<- length(A) down to 2
3. do exchange A[1]<->A[i]
4. heap-size(A)<-heap-size(A)-1
5. Max-heapify(A,1)

Review: all the sorting algorithms
so far

*All sorting algorithm stores data in an array,
but heap sort is efficient cause it can be
thought as a tree)

Review sorting Alg(1)-insertion sort

O(n2)
O(1)
selection

O(nlogn)O(nlogn)O(n2)Time
O(1)O(n)O(1)Memory
HeapMergeInsertionSorting Alg

Running Time:

Worst: (n-1)+(n-2)+…+(1)=(n-1)(n)/2=O(n2)

Best: 1+1+1……+(n-1)=O(n)

Review sorting Alg(2)-merge sort

O(n2)

O(1)

selection

O(nlogn)O(nlogn)O(n2)Time

O(1)O(n)O(1)Memory

HeapMergeInsertionSorting Alg

Running Time:

Worst, Best: n+n+n……+(n)=nlogn=O(nlogn)

Review sorting Alg(3)-selection sort

O(n2)

O(1)

selection

O(nlogn)O(nlogn)O(n2)Time

O(1)O(n)O(1)Memory

HeapMergeInsertionSorting Alg

Running time:

Worst,best: (n-1)+(n-2)+…+(1)=(n1)(n)/2=O(n2)

Given an array A with elements,A[1],…A[n]
for i ← 1 to n-1

do min ← i
for j ← i+1 to n

do if A[j]<A[min]
min ← j

A[i]↔A[min]

Conclusion

Heap supports methods
Insert and extract-max

Applied to priority queue
Better than BST, sorted array

Heapsort
Applied to sorting
Better than insertion, merge, selection sort

Reference

• www.cs.ust.hk/~qyang/171/heapsort.ppt
• http://ww3.algorithmdesign.net/handouts/H

eap.pdf

