Priority queue & Heap

2008/3/7

Review L3: Runway reservation system

* Problem:
— Alirport with single runway
— Reservation for future landings ()
— When plane lands, it is removed from the set
of pending events ()
37 a1 4649 56 time()

T

Reserved landing time

Review: the proposed solutions

3 Sorted array 1 Dictionary d BST
key value @
1
112|345 5 /
3
4
: ®
d Performance: Performance: a Performance:
a o(n) a 1 0(1) Q O(h)
a o1) 4 1 O(n) a O(h)

U Good for searching, O h=logN
but not sorting

*One more possible implementation: heap

Review L8: Binary Heap

1 definition: A Nearly complete binary tree
d Implementation: array!
 Property: Max-heap property

1 Operations
4

UMaintain max-heap property of tree rooted at A[i]

d

UConvert an array A into a max-heap

4
Sorting an array A

array

Binary Trees

root

ParentS;)//C:)\\\\\

\O

S leaf leaf

rlght(x)

Ieaf left(X)

 Binary search tree is a kind of binary tree.

Complete Binary Trees

— Where a node can have O (for the leaves) or 2 children

— all leaves are at the same depth
height no. of nodes

O ° :

1 2

O 2 4
SOA0E0 s s
d 24

— A complete binary tree with N nodes has height O(logN)

Array Implementation of Binary Heap

/@\g) A|IBICIDIEJFIGIH]|I]J
\@ 012345 67 8 .
&S

For any element in array position 1

— The left child is in position 21

— The right child Is in position 21+1

— The parent is in position floor(1/2)

Max-Heap-order property

5P

A max-heap Not a max-heap

e the value at each node is less than or equal to the
values at both its descendants

Review L8: Binary Heap

1 definition: A Nearly complete binary tree
d Implementation: array!
 Property: Max-heap property

1 Operations
4

UMaintain max-heap property of tree rooted at A[i]

d

UConvert an array A into a max-heap

4
Sorting an array A

array

@%) Max-heapify
'> Eoal:e

Max
ax-heapify(1)

Max-heapify(A,i) M 009

Max-heapify(A,l1) #maintain max-heap property of tree rooted Al[i]

1. |<-left(l)

2. r<-right(i)

3. #compare the value with left child

4, If I<=heap-size(A) and A[l]>A[i]

5. then largest<-|

6. else largest<-i

7. #compare the value with right child

8. If r<=heap-size(A) and A[r]>A[largest]
9. then largest<-r

10. # do swap if necessary and hen call max-heapify again
11. if largest=+1

12. then exchange Allargest]|<->A[i]

13. Max-heapify(A,largest)

Review L8: Binary Heap

 definition: A Nearly complete binary tree
d Implementation: array!
 Property: Max-heap property
1 Operations
d

UMaintain max-heap property of tree rooted at A[i]

d

dConvert an array A into a max-heap
J

dSorting an array A

array

3

4

1

5

6

2

— 2

} @ @?M)ax heapify(A,3) }@ L
/

@? - /

e @ Max-heapify(A,2) @ @ 1

@;@Z? Max-heapify(A,1) —)@8@/}@}) _) @5@@/) @})

2 | 3

Build maX-Heap

Length(A)=6

PO,

3

4

2

3

6

2

5

4

1

4

1

Build-max-Heap(A)

Build-m ax-Heap (A) #Convert an array A into a max-heap
1. heap-size(A)<-length(A)

2. fori<-length(A)/2 down to 1

3. do Max-heapify(A,i)

*Running time = O(n)

** can also start from | to 1 down to length(A)/2, but that may
need more calls for the method “max-heapify”

Heap Is used to implement a priority
gueue, and runway-system is a kind of
priority gqueue

Priority queue

A priority queue Is a data structure for maintaining a
set of elements with values called keys

O Application:

0 Scheduling system (Runway system)

Main Operations:
d

Q Insert an element with key k into the heap A
d

O Return element with the largest key from heap A
d

O Update the key of element A[i] to a new value , k.
Implementation
O binary search tree
O heap

Insert

APEBREBRE

Insert 8

|ﬂS€Ft(A,k) Time: O(logN)

Insert(A,K) # insert an element with key k into heap A

heap-size[A] <- heap-size[A] +1

| <-heap-size[A]

Alil=k

Insert it to next available position at the lowest level

While i>1 and A[parent(i)]<A[i]
traverse a path from this node toward the root to find
a proper place until the max-heap property is maintained

do exchange A[parent(i)]<->A[i]
I<-parent(i)

gD E

o N

Priority queue

A priority queue Is a data structure for maintaining a
set of elements with values called keys

O Application:

0 Scheduling system (Runway system)

Main Operations:
Q
O Insert an element with key k into the heap A
Q
0 Return element with the largest key from heap A
Q
O Update the key of element A[i] to a new value , k.

Implementation

U binary search tree
O heap

extract-max

e — 0O

ST e eN.y.
@{@g@@ . @?g) g Q}ng

extract-max(A) M 219

extract-max(A) #Return the largest key from heap A

max <- A[1]

A[1l] <- A[heap-size(A)]
heap-size(A) <- heap-size(A)-1
Max-heapify(A,1)

return max

bk wWwnNE

Priority queue

A priority queue Is a data structure for maintaining a
set of elements with values called keys

O Application:

0 Scheduling system (Runway system)

Main Operations:
Q
O Insert an element with key k into the heap A
Q
0 Return element with the largest key from heap A
Q
O Update the key of element A[i] to a LARGER value , k.

Implementation
U binary search tree
O heap

;
KRS K&

increase-key(A,i k)M 109N

Increase-key(A,1,K) # uUpdate the key of Ali] to a new value , k.

1. AJi] <k
2. While i>1 and A[parent(i)]<A[i]
3. # traverse a path from this node toward the root to find

a proper place until the max-heap property is maintained
4. do exchange A[parent(i)]<->A[i]
5. I<-parent(i)

*Very similar to insert

*Do max-heapify when decrease-key(A,l,k)

Compare two implementations of
priority queue

] BST ° Heap

d Performance: 4 Performance:
a O(h) 4 O(h)
a O(h) d O(h)
4 h=logN (if BST is balanced) 4 h=logN

Why iIs heap a better implementation of priority
gueue than BST?

Heap Is used for sorting arrays

Sorting

* Problem: Given an array A, return an
sorted array

®

G /
g R

3141 6|5 |4

Build-max-heap is not all

[1,2,3,4,7,8,9,10,14,16]

J Build-max-heap(A)

Heapsort (A)

Delete 16

f”|4“~

Delete 14
16
fr _ 2
(4) ; 7 (1 3
o)
()

Heapsort(A) Time: O(NlogN)

Heapsort(A) #sort an array A

1. Build-max-Heap(A) #the heapis builtin A
2 while heap-size(A)>1

3. max=extract-max(A)

4 A[heap-size(A)]=max

Heapsort(A)

Heapsort(A) #sort an array A
Build-max-Heap(A) #the heapis builtin A
for i<- length(A) down to 2
do exchange A[1]<->A[i]
heap-size(A)<-heap-size(A)-1
Max-heapify(A,1)

bk wWwnE

Review: all the sorting algorithms
SO far
*All sorting algorithm stores data in an array,

but heap sort Is efficient cause it can be
thought as a tree)

Review sortina Alg(1)-insertion sort

Start with a partially sorted Tist of items:

Sorted itemz=

L

tems =till to be zorted

—_

AV TS[TA|E5[15] 7 45 12]19] 5 |22

s Copy next unsorted itern into Termp,
Ternp: leawing a “hole" in the array

Running Time:

AT TE[17]35 FR =0 RS R R

Worst: (n-1)+(n-2)+...+(1)=(n-1)(n)/2=0(n?)
Burnp any itemns bigger than Ternp up one zpace, BeSt 1+1+1...... +(n-l):O(n)

then copy Temp into the "ernpty " location.

FUTTIS TS| T 32 7 [z 1219 2 |22
LA A

Sorted itemns

,-F"H\"'\-

- T)

AVTTTSIS| T35 7 451219 5 |22

tem= =till to be zorted

Mow, the 1ist of sorted items has
increased in size by one item.

Sorting Alg |Insertion [Merge |selection |Heap
Memory O(1) O(n) O(1) O(1)
Time O(n?) O(nlogn) | O(n?) O(nlogn)

Review sorting Alg(2)-merge sort

i
<
P T AN N
Ny A/ v

Ny) ' Running Time:

BE 38\4i '; - B{ Worst, Best: n+n+n......+(n)=nlogn=0(nlogn)
Sorting Alg |Insertion Merge |selection|Heap
Memory O(1) O(n) O(1) O(1)

Time O(n?) O(nlogn) | O(n?) O(nlogn)

Review sorting Alg(3)-selection sort

Swap 10 and 1, 115 less than 10

Swap 10 and 2, 2is less than 10

Swap 9 and 3, 3is less than 9

Swap 10 and 8, 815 less than 10

Swap 10 and 9, 315 less than 10

Given an array A with elements,A[1],...A[n]
fori <~ 1ton-1
do min < |
forj <—i+lton
do if A[jJ<A[mIn]
min <— |

Ali]>A[min]

Running time:
Worst,best: (n-1)+(n-2)+...+(1)=(n1)(n)/2=0(n?)

Sorting Alg |Insertion Merge |selection|Heap
Memory O(1) O(n) O(1) O(1)
Time O(n?) O(nlogn) | O(n?) O(nlogn)

Conclusion

O Heap supports methods

O

O Applied to priority queue
O Better than

O

O Applied to sorting
OO0 Better than

Reference

e www.cs.ust.hk/~gqyang/171/heapsort.ppt

 http://ww3.algorithmdesign.net/handouts/H
eap.pdf

