Introduction to Algorithms March 11, 2009
Massachusetts Institute of Technology 6.006 Spring 2009
Professors Sivan Toledo and Alan Edelman Quiz 1 Solutions

Quiz 1 Solutions

Problem 1. Asymptotic orders of growth [10 points] (4 parts)

For each pair of functions, circle the asymptotic relatiops that apply. You do not need to give
a proof.

@ f(n)=+vn
g(n) = logn
Circle all that apply:
f=0(9) f=06(9) f=9(g)

Solution: logn grows more slowly than any polynomial it so f = Q(g).

(b) f(n) =1
g(n) =2
Circle all that apply:

f=0(g) f=0(g) f=9Q(9)

Solution: All constants are related to each other by a constant fastathey have
the same order of growttf. = ©(g), and thereforeg = O(g) and f = Q(g) also.
(©) f(n)=1000-2"
g(n) =3"
Circle all that apply:

f=0(9) f=06() f=9(g)

Solution: 2" /3™ approaches 0 as — oo. Therefore, the only relation that holds is
f=0(g).
(d) f(n) =b5nlogn
g(n) = nlogbn
Circle all that apply:

f=0(g) f=0(g) f=9Q(9)

Solution: nlogbn = nlogh + nlogn = O(nlogn). Also, 5nlogn = O(nlogn).
These are the same order of growth,fse O(g), f = O(g), andf = Q(g).

6.006 Quiz 1 Solutions Name 2

Problem 2. Trueor False[16 points] (4 parts)

For each of the following questions, circle either T (TrueJqFalse).Explain your choice. (No
credit if no explanation given.)

@ TF

(b) TF

o TF

d TF

Performing a left rotation on a node and then a right rotatinrthesame node
will not change the underlying tree structure.
Explain:

Solution: False. The figure below shows what happens in this case. T@ und
the left rotation onz, we must do a right rotation on

While inserting an element into a BST, we will pass the elensgmttdecessor
and successor (if they exist).
Explain:

Solution: True. The predecessor of a node is either the maximum eleohent
its left subtree, or one of its ancestors. A newly-insertedienhas no descendants,
so the predecessor must be one of its ancestors, and hernuedseessor is on
the path that was traversed during the insertion proced@rsimilar argument
holds for the successor.)

For a hash table using open addressing, if we maintair ©(n), then we can
expect a good search and insert runtime.
Explain:

Solution: False. If the hash table is nearly full, for example i&= m — 1, then
the runtimes will take- = O(n).

If we know ahead of time all the keys that will ever be inseiited a hash table,
it is possible to design a hash table tigatrantees O(1) lookup and insertion
times, while using)(n) space.

Explain:

Solution: True. Use perfect hashing.

6.006 Quiz 1 Solutions Name 3

Problem 3. Short Answer [24 points] (4 parts)

(@)

(b)

Describe an efficient method to merge two balanced binamckdeees withn ele-
ments each into a balanced BST. Give its running time.

Solution: We can start by doing an in-order walk of both trees conctiyreAt each
step, we compare the two tree elements and add the smallentoreelist, L, before
calling that element’s successor. When we finish walking bratés, L will contain a
sorted list of elements from both trees. This takés + n) = O(n) total time.

Now, from the sorted list, we want to creatbaanced binary tree, which is the same
problem as described in problem set 2. We can do this by getterroot as the middle
element of the list, and letting the first half of the list beléft subtree and the second
half be its right subtree (recursively creating the baldregbtrees as well). This also
takesO(n 4+ n) = O(n) time.

The total time for this algorithm is therefofe(n).

Suppose you are given a list ofelements such that the location of each element is at
mostlg(lgn) elements away from the location it would be in if the list weneted.
Describe am(n lg n)-time method to sort the list and give its asymptotic runrinee.

Solution: Insertion sort. With insertion sort, at iterationwe attempt to move the
i — th element into its correct place within the first (0..i) slotSince an element
can be at moslg(lgn) positions away from its correct position, the element wél b
moved at mostg(lgn) times. There arev — 1 iterations in insertion sort, so the
asymptotic runtime is bounded ly(n lg(lgn)), which iso(nlgn). Note that the
little-oh notation discounted all thelg n algorithms.

6.006 Quiz 1 Solutions Name

(c) Suppose we have a hash table that resolves collisions ysamaaldressing with linear
probing. Slots with no keys contain either an EMPTY markeat ®@ELETED marker.
Alyssa P. Hacker tries to reduce the number of DELETED matk&te proposes to
use the following rules in the delete method:

i. Ifthe objectin the next slotis EMPTY, then a DELETED marisenot necessary.

ii. If the object in the next slot has a different initial pebalue, then a DELETED
marker is not necessary.

Determine whether each of the above rules guarantees thahss return a correct
result. Explain.

Solution:

I. True. If the next slot is EMPTY, then any search would stbinat slot and return
false. If we didn’t place a DELETED marker, search would stoe slot earlier
and still return false.

ii. False. Consider a counterexample. két;,0) == h(ks,0) andh(k;,0)+1 ==
h(ks,0). If keysky, ko, andk; are inserted into a hash table in that order, then they
would hash to consecutive slots in that same order. Nadw i$ deleted from the
hash table, but is not marked with a DELETED marker, thencéefar k5 would
incorrectly return false, because the delete method wdwddlcsloth(ks, 0) first
and see that it is EMPTY.

(d) An open-addressing hash table that resolves collisiomguisiear probing is initially
empty. Keyk; is inserted into the table first, followed lky, and thenk; (the keys
themselves are drawn randomly from a universal set of keys).

I. Supposeé, is deleted from the hash table and replaced by a DELETED marke
What is the probability that searching fby requires exactly three probes?

ii. What is the probability that searching féy takes exactly two probes?

6.006 Quiz 1 Solutions Name

Solution:

P(k; requires exactly 3 probgs= 3/m?. We treat a DELETED marker like an
inserted element during a search or insert operation. Tblapility we have
three probes during a search faris the same as the probability we have three
probes while insertings. Insertingks in the table would require three probes iff
the first two probes hit occupied slots. Since we have two ketrse tablek; and

ko, they need to be consecutive aldshould hash to the one which is above of
the two. So we have two cases:

(@) ko is above ofk; : &, is free to hash to any slot arid should hash to the slot
abovefk;. So the probability for this case igm.

(b) k5 is belowk;: k; is free to hash to any slot. Now f@s to hash to the next
slot, it can either hash to the same slot occupiedbgr it can hash directly
to the next slot. Sé, has 2 places to hash to, therefore the probability of this
case i®/m.

Now for k3 to require 3 probes for insertion, it should hash to the keyvab
of the two k; and k,, so the total probabilityc; hashing to the above slot is:
(1/m+2/m) x 1/m = 3/m>.

. P(ky requires exactly 2 probgs= 0. Because:; was inserted first, it must have

been inserted into its initial probe slot. Therefore, skeag for £; will only
require the initial probe.

6.006 Quiz 1 Solutions Name 6

Problem 4. Piles[20 points] (3 parts)

The heaps that we discussed in class are binary trees thstbaed in arrays; there are no explicit
pointers to children, because the index of children in thayacan be computed given the index of
the parent.

This problem explores heaps (priority queues) that areesgmted like search trees, in which each
tree node is allocated separately and in which parent naalesédxplicit pointers to their children.
We will call this data structure Bile. A node in a pile can have zero to two children, and the value
stored in the node must be at least as large as the value stateahildren.

(a) What is the asymptotic cost oREERTand EXTRACT-MAX in a pile of heighth with
n nodes? Explain.

Solution: Both costs ar€(h). These algorithms don'’t differ significantly from the
corresponding heap operations, except that the height itd &smot guaranteed to be
O(lgn), because the pile might be an unbalanced tree.

(b) An AVL Pileis a pile in which every node also stores the height of thereelyboted
at the node, and in which the height of the children of a nodedifier by at most
one. (The height of a missing child is defined to-be) What is the maximum height
of an AVL pile with n nodes?

Solution: The same analysis as for an AVL tree works here, too; theioestip
between the nodes doesn't play into the height analysid.atlaé height of an AVL
pile isO(lgn).

(c) Describe a simple algorithm to insert a value into an AVL Rilgle maintaining the
AVL property (ensuring that the height difference betwednhirgys is at most one).
Argue that your algorithm indeed maintains the AVL property

Solution: The idea is to add the new node into the side that has the srhailght,
thus ensuring that the insertion doesn’t violate the AVLgendy. This eliminates the
need for rotations, which are difficult to implement corheat a pile.

Start at the root of the pile. Compare the value being inseddke value at the root
node. Store the larger of the two at the root node, then takesrtialler of the two
and recursively insert it into the subtree with the smalkgight. (If the subtrees have
equal height, pick one arbitrarily.) Because the subtreghtevill increase by at most
1 as a result of the insertion, the AVL invariant is preserved

Now climb back up from the new leaf to the root, keeping tratkhe height you
climbed up. At each node along the way, if the depth is larigen the height stored
at the node then increase the stored height by 1. We canmetsethe heights on the
way down because we do not know whether the new leaf will eedhe height of a
node or not.

© 0N OB~ WDN B

el el =
W N Rk O

6.006 Quiz 1 Solutions Name

Problem 5. Roalling hashes[15 points] (3 parts)

Ben Bitdiddle, Louis Reasoner, and Alyssa P. Hacker are tryireplve the problem of searching

for a given string of length in a text of lengthn.

They implement different algorithms that all follow the sageneral outline, and all make use of

a hash functior(z, p) which maps a string to a number in the range. .. p — 1.

The values returned by(z, p) satisfy uniform hashing.

def

(@)

string_search(text, substring):

m = | en(substring)

n = len(text)

if m>n: return None

p = ... # differs based on inplenentation

target = h(substring, p)
for start in xrange(O, n-m+ 1):
the +1 includes the endpoint n-m

hval ue = ... # calcul ate h(x, p)
if hvalue == target:
if text[start:start+nm == substring:

return start
return None

Ben Bitdiddle chooses so thatl/2 < a < 1, wherea = n/p. He implements the
hash operation on line 9 using a non-rolling hash:

hval ue = h(text[start:start+m, p)

In terms ofm andn (not «), what is the asymptotic expected running time of Ben’s
algorithm? Explain your answer.

T(m,n)=60(_m-n)

Explain:

Solution: Ben has to slice and hash a substring of lengthvery time through the
loop. Both of these operations takdm) time, dominating the running time of the
loop. The loop runs foB(n) iterations . — m + 1 is still ©(n)). These multiply to
give an overall running time &d(m - n).

6.006 Quiz 1 Solutions Name

(b) Alyssa P. Hacker recognizes that this is a good case to usiiraggreash. She de-
finesh so that she can calculate each hash valueext [start:start+m, p)
from the previous valud(text[start-1:start-1+nj, p) using a constant
number of arithmetic operations on values no larger han
Instead of calling thé function on the substring every time like Ben Bitdiddle does,
then, on line 9 she simply updatesal ue based on its previous value using these
arithmetic operations. She chooges the same manner as Ben.

In terms ofm andn (not«), what is the asymptotic expected running time of Alyssa’s
algorithm? Explain your answer.

T(m,n)=0(nlgn or n)

Explain:

Solution: There are two operations in the inner loop whose runtime welshan-
alyze: calculating the hash, and checking for a substringima@ecause of uniform
hashing, we know that the substring match is not checkeq ¢vee, so we will ana-
lyze them separately.

After an initialization which take®(m) time, the hash is performed using a constant
number of arithmetic operations on numbers no larger thaks n gets very largep
must as well, making the arithmetic operations take longddition and multiplica-
tion by constants both take(lgp) = ©(lgn), so the total cost of the rolling hash over
all iterations of the loop i®(m + nlgn) = O(nlgn).

It is often acceptable to make the simplifying assumptiat #rithmetic can be done
in constant time. Therefore, you could also say that thegphash take® (m+n) =
O(n) time and get full credit.

Each time a matching hash is found, the substrings have torbpared, which takes
time proportional to the length of the string3(m). However, there will not be a hash
collision every time. By uniform hashing we know to expedtash collisions in total.
So the total cost of this step é(« - m), which is©(m) becausey is bounded by a
constant.

The total of these two costs &(nlgn + m) = ©(nlgn), or O(n +m) = O(n) if
you made the simplifying assumption about arithmetic.

6.006 Quiz 1 Solutions Name

(c) Louis Reasoner doesn’t want to worry about searching for @ gwimne number, so
on line 5 he simply sets = 1009 and letsa vary. He implements the rolling hash
like Alyssa.

In terms ofm andn (not«), what is the asymptotic expected running time of Louis’s
algorithm? Explain your answer.

T(m,n)=06(_m-n)

Explain:

Solution: Analyze this code in the same way as Alyssa’s. The cruciémihce is
thata is no longer bounded by a constant; it grows proportionally.tThe term that
dominates i (n - m).

6.006 Quiz 1 Solutions Name 10

Problem 6. Treaps[15 points] (1 parts)

Ben Bitdiddle recently learned about heaps and binary segeeh in his algorithms class. He was
so excited about getting to know about them, he thought oheemesting way to combine them to
create a new hybrid binary tree calletreap.

The treafdl” has a tuple value stored at each n@eg)) where he calls: the key, andy the priority

of the node. The keys follow the BST property (maintain the B8&riant) while the priorities
maintain the min-heap property. An example treap is sholowbe

Describe an efficient algorithm foNBERT((z, y), T') that takes a new node with key valueand
priority y and inserts it into the trea. Analyze the running time of your algorithm on a treap
with n nodes, and heiglit.

Solution: Insert the new node according to the standard B$JERT procedure. This preserves
the BST property, but may result in a violation of the heap prop Now, we need to fix the heap
property by moving the new node up in the treap until it reacte correct place. Do this by
repeatedly rotating on the node’s parent, moving the nodengdevel while preserving the BST
invariant.

The BST insertion requireS(h) time. Each rotation take3(1), andO(h) rotations are required,
so the total insertion time i©(h).

6.006 Quiz 1 Solutions Name 11

Problem 7. Amortized Successor [20 points] (3 parts)

Thesuccessor of a noder in a binary search treég is the node iril” with the smallest value that is
larger than the value of. We assume in this question that all the values in the trediatiact.

Consider the following code for determining the success@oofie noder. A node is an object
with a value and pointers to its parent and left and rightdzkih.

1 # gets successor of x in tree rooted at root
2 def get _successor(x, root):

3 if x == None:

4 return None

5 elif x.right !'= None:

6 return get_m ni mun(x. right)

7 el se:

8 while x !'=root and x.parent.right == x:
9 X = X.parent

10 return x. parent

11

12 # gets minimumnode in tree rooted at x
13 def get _m ni mum(x):

14 if x == None:

15 return None

16 elif x.left == None:

17 return x

18 el se:

19 return get_m ni num(x. | eft)

(@) Show that the worst-case running timegaft _successor isO(lgn) on a balanced
BST andO(n) on a general BST.

Solution: There are two worst cases wheyet _successor has to traverse the
entire height of the tree. In the first caggst _successor is called on the root of
the tree and its successor is at the bottom of the tree. Hereall toget _m ni num
must visit every node in between, so that the running timgedf_successor is
O(h), whereh is the height of the tree. In the other caget _successor is called
on a node at the bottom of the tree and its successor is the iHawe, the loop that
checks successive parents to determine the first ancestoe taght of the current
node must visit every node in between, for a running timé&¢f). Since each of the
two cases has a running 6f(h), the worst-case running time gkt _successor

is O(h). For a balanced BST, = O(lgn), and for a general BST, = O(n).

6.006 Quiz 1 Solutions Name 12

The following procedure returns a list of all the values inraby search tree by finding the mini-
mum and then locating the successor of each node in turn.

1 # returns ordered list of values in tree rooted at root
2 def spell _out(root):
node list = []
current _node = get_m ni mun(root)
while current _node != root. parent:

node_l i st. append(current_node. val ue)

current _node = get_successor(current_node, root)
return node_ | i st

0 ~NO 01~ W

(b) Sinceget _successor is called once for each node in the tree, an upper bound
for the worst-case running time epel | _out is O(nlgn) on a balanced BST and
O(n?) on a general BST. This bound, however, is not asymptoticiglht.t

Using amortized analysis, show trepel | _out runs in worst-casé€(n) time on
any BST.

Hint: How many times is each edge encountered over the coussgedfl _out ?

Solution: Each edge is encountered exactly twice over the courspef | _out ,
once while descending into a subtree and once while asagmaim a subtree. An
edge is not passed during more than one descent because ertavevvisited all
nodes in a subtree, subsequent callgéd _successor do not check a current
node’s left child. An edge is also not passed during more traascent because
each ascent requires a preceding descent.

Each edge traversal has @nl) cost because the operations within each recursive call
toget _m ni nrumand each iteration of thehi | e loop inget _successor hasa
constant cost. All remaining operations have’sn) cost and are performed once for
each node. Therefore the total coss@fel | _out consists of local node operations
for n nodes (for a total o®(n)) and accumulated edge-dependent operations-oi
edges (for a total of)(n)). Altogether, the entire procedure runsin) time.

(c) Give an asymptotically tight bound on the amortized cogjeif _successor over
the course of one call topel | _out .

Solution: Over the course of one call spel | _out, get _successor is called

n times, once for each node. The total cost of thgse_successor calls is the

cost ofspel | _out minus the cost of the initial call tget _m ni nrum We can

ignore this initial cost since we are computing an upper blaumthe total cost of the
n get _successor calls. The amortized cost of a single call is thi€fn)/n, there

T(n) = O(n) is the overall cost of the get _successor calls. This isO(1).

