
Introduction to Algorithms March 11, 2009
Massachusetts Institute of Technology 6.006 Spring 2009
Professors Sivan Toledo and Alan Edelman Quiz 1 Solutions

Quiz 1 Solutions

Problem 1. Asymptotic orders of growth [10 points] (4 parts)

For each pair of functions, circle the asymptotic relationships that apply. You do not need to give
a proof.

(a) f(n) =
√
n

g(n) = log n

Circle all that apply:

f = O(g) f = Θ(g) f = Ω(g)

Solution: log n grows more slowly than any polynomial inn, sof = Ω(g).

(b) f(n) = 1
g(n) = 2

Circle all that apply:

f = O(g) f = Θ(g) f = Ω(g)

Solution: All constants are related to each other by a constant factor,so they have
the same order of growth.f = Θ(g), and thereforef = O(g) andf = Ω(g) also.

(c) f(n) = 1000 · 2n
g(n) = 3n

Circle all that apply:

f = O(g) f = Θ(g) f = Ω(g)

Solution: 2n/3n approaches 0 asn → ∞. Therefore, the only relation that holds is
f = O(g).

(d) f(n) = 5n log n
g(n) = n log 5n

Circle all that apply:

f = O(g) f = Θ(g) f = Ω(g)

Solution: n log 5n = n log 5 + n log n = Θ(n log n). Also, 5n log n = Θ(n log n).
These are the same order of growth, sof = Θ(g), f = O(g), andf = Ω(g).

6.006 Quiz 1 Solutions Name 2

Problem 2. True or False [16 points] (4 parts)

For each of the following questions, circle either T (True) or F (False).Explain your choice. (No
credit if no explanation given.)

(a) T F Performing a left rotation on a node and then a right rotationon thesame node
will not change the underlying tree structure.
Explain:

Solution: False. The figure below shows what happens in this case. To undo
the left rotation onx, we must do a right rotation ony.

x

ya

cb

x

y

a b

c

y

c

x

a

b

(b) T F While inserting an element into a BST, we will pass the element’s predecessor
and successor (if they exist).
Explain:

Solution: True. The predecessor of a node is either the maximum elementof
its left subtree, or one of its ancestors. A newly-inserted node has no descendants,
so the predecessor must be one of its ancestors, and hence thepredecessor is on
the path that was traversed during the insertion procedure.(A similar argument
holds for the successor.)

(c) T F For a hash table using open addressing, if we maintainm = Θ(n), then we can
expect a good search and insert runtime.
Explain:

Solution: False. If the hash table is nearly full, for example ifn = m− 1, then
the runtimes will take 1

1−α
= O(n).

(d) T F If we know ahead of time all the keys that will ever be insertedinto a hash table,
it is possible to design a hash table thatguarantees O(1) lookup and insertion
times, while usingO(n) space.
Explain:

Solution: True. Use perfect hashing.

6.006 Quiz 1 Solutions Name 3

Problem 3. Short Answer [24 points] (4 parts)

(a) Describe an efficient method to merge two balanced binary search trees withn ele-
ments each into a balanced BST. Give its running time.

Solution: We can start by doing an in-order walk of both trees concurrently. At each
step, we compare the two tree elements and add the smaller oneinto a list, L, before
calling that element’s successor. When we finish walking bothtrees, L will contain a
sorted list of elements from both trees. This takesO(n+ n) = O(n) total time.

Now, from the sorted list, we want to create abalanced binary tree, which is the same
problem as described in problem set 2. We can do this by setting the root as the middle
element of the list, and letting the first half of the list be its left subtree and the second
half be its right subtree (recursively creating the balanced subtrees as well). This also
takesO(n+ n) = O(n) time.

The total time for this algorithm is thereforeO(n).

(b) Suppose you are given a list ofn elements such that the location of each element is at
most lg(lg n) elements away from the location it would be in if the list weresorted.
Describe ano(n lg n)-time method to sort the list and give its asymptotic runningtime.

Solution: Insertion sort. With insertion sort, at iterationi, we attempt to move the
i − th element into its correct place within the first (0..i) slots.Since an element
can be at mostlg(lg n) positions away from its correct position, the element will be
moved at mostlg(lg n) times. There aren − 1 iterations in insertion sort, so the
asymptotic runtime is bounded byO(n lg(lg n)), which is o(n lg n). Note that the
little-oh notation discounted all then lg n algorithms.

6.006 Quiz 1 Solutions Name 4

(c) Suppose we have a hash table that resolves collisions using open addressing with linear
probing. Slots with no keys contain either an EMPTY marker ora DELETED marker.
Alyssa P. Hacker tries to reduce the number of DELETED markers; she proposes to
use the following rules in the delete method:

i. If the object in the next slot is EMPTY, then a DELETED marker is not necessary.

ii. If the object in the next slot has a different initial probe value, then a DELETED
marker is not necessary.

Determine whether each of the above rules guarantees that searches return a correct
result. Explain.

Solution:

i. True. If the next slot is EMPTY, then any search would stop at that slot and return
false. If we didn’t place a DELETED marker, search would stopone slot earlier
and still return false.

ii. False. Consider a counterexample. Leth(k1, 0) == h(k3, 0) andh(k1, 0)+1 ==
h(k2, 0). If keysk1, k2, andk3 are inserted into a hash table in that order, then they
would hash to consecutive slots in that same order. Now ifk1 is deleted from the
hash table, but is not marked with a DELETED marker, then search fork3 would
incorrectly return false, because the delete method would check sloth(k3, 0) first
and see that it is EMPTY.

(d) An open-addressing hash table that resolves collisions using linear probing is initially
empty. Keyk1 is inserted into the table first, followed byk2, and thenk3 (the keys
themselves are drawn randomly from a universal set of keys).

i. Supposek2 is deleted from the hash table and replaced by a DELETED marker.
What is the probability that searching fork3 requires exactly three probes?

ii. What is the probability that searching fork1 takes exactly two probes?

6.006 Quiz 1 Solutions Name 5

Solution:

i. P (k3 requires exactly 3 probes) = 3/m2. We treat a DELETED marker like an
inserted element during a search or insert operation. The probability we have
three probes during a search fork3 is the same as the probability we have three
probes while insertingk3. Insertingk3 in the table would require three probes iff
the first two probes hit occupied slots. Since we have two keysin the tablek1 and
k2, they need to be consecutive andk3 should hash to the one which is above of
the two. So we have two cases:

(a) k2 is above ofk1 : k1 is free to hash to any slot andk2 should hash to the slot
abovek1. So the probability for this case is1/m.

(b) k2 is belowk1: k1 is free to hash to any slot. Now fork2 to hash to the next
slot, it can either hash to the same slot occupied byk1 or it can hash directly
to the next slot. Sok2 has 2 places to hash to, therefore the probability of this
case is2/m.

Now for k3 to require 3 probes for insertion, it should hash to the key above
of the two k1 and k2, so the total probabilityk3 hashing to the above slot is:
(1/m+ 2/m)× 1/m = 3/m2.

ii. P (k1 requires exactly 2 probes) = 0. Becausek1 was inserted first, it must have
been inserted into its initial probe slot. Therefore, searching for k1 will only
require the initial probe.

6.006 Quiz 1 Solutions Name 6

Problem 4. Piles [20 points] (3 parts)

The heaps that we discussed in class are binary trees that arestored in arrays; there are no explicit
pointers to children, because the index of children in the array can be computed given the index of
the parent.

This problem explores heaps (priority queues) that are represented like search trees, in which each
tree node is allocated separately and in which parent nodes have explicit pointers to their children.
We will call this data structure aPile. A node in a pile can have zero to two children, and the value
stored in the node must be at least as large as the value storedat its children.

(a) What is the asymptotic cost of INSERTand EXTRACT-MAX in a pile of heighth with
n nodes? Explain.

Solution: Both costs areO(h). These algorithms don’t differ significantly from the
corresponding heap operations, except that the height of a pile is not guaranteed to be
O(lg n), because the pile might be an unbalanced tree.

(b) An AVL Pile is a pile in which every node also stores the height of the subtree rooted
at the node, and in which the height of the children of a node can differ by at most
one. (The height of a missing child is defined to be−1.) What is the maximum height
of an AVL pile with n nodes?

Solution: The same analysis as for an AVL tree works here, too; the relationship
between the nodes doesn’t play into the height analysis at all. The height of an AVL
pile isO(lg n).

(c) Describe a simple algorithm to insert a value into an AVL Pilewhile maintaining the
AVL property (ensuring that the height difference between siblings is at most one).
Argue that your algorithm indeed maintains the AVL property.

Solution: The idea is to add the new node into the side that has the smaller height,
thus ensuring that the insertion doesn’t violate the AVL property. This eliminates the
need for rotations, which are difficult to implement correctly in a pile.
Start at the root of the pile. Compare the value being insertedto the value at the root
node. Store the larger of the two at the root node, then take the smaller of the two
and recursively insert it into the subtree with the smaller height. (If the subtrees have
equal height, pick one arbitrarily.) Because the subtree height will increase by at most
1 as a result of the insertion, the AVL invariant is preserved.
Now climb back up from the new leaf to the root, keeping track of the height you
climbed up. At each node along the way, if the depth is larger than the height stored
at the node then increase the stored height by 1. We cannot increase the heights on the
way down because we do not know whether the new leaf will increase the height of a
node or not.

6.006 Quiz 1 Solutions Name 7

Problem 5. Rolling hashes [15 points] (3 parts)

Ben Bitdiddle, Louis Reasoner, and Alyssa P. Hacker are trying to solve the problem of searching
for a given string of lengthm in a text of lengthn.

They implement different algorithms that all follow the same general outline, and all make use of
a hash functionh(x, p) which maps a stringx to a number in the range0 . . . p− 1.

The values returned byh(x, p) satisfy uniform hashing.

1 def string_search(text, substring):
2 m = len(substring)
3 n = len(text)
4 if m > n: return None
5 p = ... # differs based on implementation
6 target = h(substring, p)
7 for start in xrange(0, n-m + 1):
8 # the +1 includes the endpoint n-m
9 hvalue = ... # calculate h(x, p)

10 if hvalue == target:
11 if text[start:start+m] == substring:
12 return start
13 return None

(a) Ben Bitdiddle choosesp so that1/2 ≤ α ≤ 1, whereα = n/p. He implements the
hash operation on line 9 using a non-rolling hash:

hvalue = h(text[start:start+m], p)

In terms ofm andn (not α), what is the asymptotic expected running time of Ben’s
algorithm? Explain your answer.

T (m,n) = Θ(m · n)

Explain:

Solution: Ben has to slice and hash a substring of lengthm every time through the
loop. Both of these operations takeΘ(m) time, dominating the running time of the
loop. The loop runs forΘ(n) iterations (n −m + 1 is still Θ(n)). These multiply to
give an overall running time ofΘ(m · n).

6.006 Quiz 1 Solutions Name 8

(b) Alyssa P. Hacker recognizes that this is a good case to use a rolling hash. She de-
finesh so that she can calculate each hash valueh(text[start:start+m], p)
from the previous valueh(text[start-1:start-1+m], p) using a constant
number of arithmetic operations on values no larger thanp.

Instead of calling theh function on the substring every time like Ben Bitdiddle does,
then, on line 9 she simply updateshvalue based on its previous value using these
arithmetic operations. She choosesp in the same manner as Ben.

In terms ofm andn (notα), what is the asymptotic expected running time of Alyssa’s
algorithm? Explain your answer.

T (m,n) = Θ(n lg n or n)

Explain:

Solution: There are two operations in the inner loop whose runtime we should an-
alyze: calculating the hash, and checking for a substring match. Because of uniform
hashing, we know that the substring match is not checked every time, so we will ana-
lyze them separately.

After an initialization which takesΘ(m) time, the hash is performed using a constant
number of arithmetic operations on numbers no larger thanp. As n gets very large,p
must as well, making the arithmetic operations take longer.Addition and multiplica-
tion by constants both takeΘ(lgp) = Θ(lgn), so the total cost of the rolling hash over
all iterations of the loop isΘ(m+ n lg n) = Θ(n lg n).

It is often acceptable to make the simplifying assumption that arithmetic can be done
in constant time. Therefore, you could also say that the rolling hash takesΘ(m+n) =
Θ(n) time and get full credit.

Each time a matching hash is found, the substrings have to be compared, which takes
time proportional to the length of the strings:Θ(m). However, there will not be a hash
collision every time. By uniform hashing we know to expectα hash collisions in total.
So the total cost of this step isΘ(α · m), which isΘ(m) becauseα is bounded by a
constant.

The total of these two costs isΘ(n lg n + m) = Θ(n lg n), or Θ(n + m) = Θ(n) if
you made the simplifying assumption about arithmetic.

6.006 Quiz 1 Solutions Name 9

(c) Louis Reasoner doesn’t want to worry about searching for a good prime number, so
on line 5 he simply setsp = 1009 and letsα vary. He implements the rolling hash
like Alyssa.

In terms ofm andn (notα), what is the asymptotic expected running time of Louis’s
algorithm? Explain your answer.

T (m,n) = Θ(m · n)

Explain:

Solution: Analyze this code in the same way as Alyssa’s. The crucial difference is
thatα is no longer bounded by a constant; it grows proportionally to n. The term that
dominates isΘ(n ·m).

6.006 Quiz 1 Solutions Name 10

Problem 6. Treaps [15 points] (1 parts)

Ben Bitdiddle recently learned about heaps and binary search trees in his algorithms class. He was
so excited about getting to know about them, he thought of an interesting way to combine them to
create a new hybrid binary tree called atreap.

The treapT has a tuple value stored at each node(x, y) where he callsx thekey , andy thepriority
of the node. The keys follow the BST property (maintain the BST invariant) while the priorities
maintain the min-heap property. An example treap is shown below:

Describe an efficient algorithm for INSERT((x, y), T) that takes a new node with key valuex and
priority y and inserts it into the treapT . Analyze the running time of your algorithm on a treap
with n nodes, and heighth.

Solution: Insert the new node according to the standard BST INSERTprocedure. This preserves
the BST property, but may result in a violation of the heap property. Now, we need to fix the heap
property by moving the new node up in the treap until it reaches the correct place. Do this by
repeatedly rotating on the node’s parent, moving the node upone level while preserving the BST
invariant.

The BST insertion requiresO(h) time. Each rotation takesO(1), andO(h) rotations are required,
so the total insertion time isO(h).

6.006 Quiz 1 Solutions Name 11

Problem 7. Amortized Successor [20 points] (3 parts)

Thesuccessor of a nodex in a binary search treeT is the node inT with the smallest value that is
larger than the value ofx. We assume in this question that all the values in the tree aredistinct.

Consider the following code for determining the successor ofsome nodex. A node is an object
with a value and pointers to its parent and left and right children.

1 # gets successor of x in tree rooted at root
2 def get_successor(x, root):
3 if x == None:
4 return None
5 elif x.right != None:
6 return get_minimum(x.right)
7 else:
8 while x != root and x.parent.right == x:
9 x = x.parent

10 return x.parent
11

12 # gets minimum node in tree rooted at x
13 def get_minimum(x):
14 if x == None:
15 return None
16 elif x.left == None:
17 return x
18 else:
19 return get_minimum(x.left)

(a) Show that the worst-case running time ofget successor isO(lg n) on a balanced
BST andO(n) on a general BST.

Solution: There are two worst cases whereget successor has to traverse the
entire height of the tree. In the first case,get successor is called on the root of
the tree and its successor is at the bottom of the tree. Here, the call toget minimum
must visit every node in between, so that the running time ofget successor is
O(h), whereh is the height of the tree. In the other case,get successor is called
on a node at the bottom of the tree and its successor is the root. Here, the loop that
checks successive parents to determine the first ancestor tothe right of the current
node must visit every node in between, for a running time ofO(h). Since each of the
two cases has a running ofO(h), the worst-case running time ofget successor
is O(h). For a balanced BST,h = O(lg n), and for a general BST,h = O(n).

6.006 Quiz 1 Solutions Name 12

The following procedure returns a list of all the values in a binary search tree by finding the mini-
mum and then locating the successor of each node in turn.

1 # returns ordered list of values in tree rooted at root
2 def spell_out(root):
3 node_list = []
4 current_node = get_minimum(root)
5 while current_node != root.parent:
6 node_list.append(current_node.value)
7 current_node = get_successor(current_node, root)
8 return node_list

(b) Sinceget successor is called once for each node in the tree, an upper bound
for the worst-case running time ofspell out is O(n lg n) on a balanced BST and
O(n2) on a general BST. This bound, however, is not asymptotically tight.

Using amortized analysis, show thatspell out runs in worst-caseO(n) time on
any BST.

Hint: How many times is each edge encountered over the course ofspell out?

Solution: Each edge is encountered exactly twice over the course ofspell out,
once while descending into a subtree and once while ascending from a subtree. An
edge is not passed during more than one descent because once we have visited all
nodes in a subtree, subsequent calls toget successor do not check a current
node’s left child. An edge is also not passed during more thanone ascent because
each ascent requires a preceding descent.

Each edge traversal has anO(1) cost because the operations within each recursive call
to get minimum and each iteration of thewhile loop inget successor has a
constant cost. All remaining operations have anO(1) cost and are performed once for
each node. Therefore the total cost ofspell out consists of local node operations
for n nodes (for a total ofO(n)) and accumulated edge-dependent operations onn−1
edges (for a total ofO(n)). Altogether, the entire procedure runs inO(n) time.

(c) Give an asymptotically tight bound on the amortized cost ofget successor over
the course of one call tospell out.

Solution: Over the course of one call tospell out, get successor is called
n times, once for each node. The total cost of theseget successor calls is the
cost ofspell out minus the cost of the initial call toget minimum. We can
ignore this initial cost since we are computing an upper bound on the total cost of the
n get successor calls. The amortized cost of a single call is thenT (n)/n, there
T (n) = O(n) is the overall cost of then get successor calls. This isO(1).

