
Introduction to Algorithms March 12, 2008
Massachusetts Institute of Technology 6.006 Spring 2008
Professors Srini Devadas and Erik Demaine Quiz 1

Quiz 1
• Do not open this quiz booklet until you are directed to do so. Read all the instructions on

this page.
• When the quiz begins, write your name on every page of this quiz booklet.
• This quiz contains 7 problems, some with multiple parts. You have 120 minutes to earn 120

points.
• This quiz booklet contains 10 pages, including this one. Two extra sheets of scratch paper

are attached. Please detach them before turning in your quiz at the end of the exam period.
• This quiz is closed book. You may use one 81

2

′′ × 11′′ or A4 crib sheet (both sides). No
calculators or programmable devices are permitted.
• Write your solutions in the space provided. If you need more space, write on the back of the

sheet containing the problem. Do not put part of the answer to one problem on the back of
the sheet for another problem, since the pages may be separated for grading.
• Do not waste time and paper rederiving facts that we have studied. It is sufficient to cite

known results.
• Do not spend too much time on any one problem. Read them all through first, and attack

them in the order that allows you to make the most progress.
• Show your work, as partial credit will be given. You will be graded not only on the correct-

ness of your answer, but also on the clarity with which you express it. Be neat.
• Good luck!

Problem Parts Points Grade Grader

1 1 15

2 1 20

3 2 15

4 2 30

5 1 10

6 1 15

7 2 15

Total 120

Name:

Circle your recitation time:
Hueihan Jhuang: (10AM) (11AM) Victor Costan (2PM) (3PM)



6.006 Quiz 1 Name 2

Problem 1. Asymptotic workout [15 points]

For each function f(n) along the left side of the table, and for each function g(n) across the
top, write O, Ω, or Θ in the appropriate space, depending on whether f(n) = O(g(n)), f(n) =
Ω(g(n)), or f(n) = Θ(g(n)). If more than one such relation holds between f(n) and g(n), write
only the strongest one. The first row is a demo solution for f(n) = n2.

g(n)

n n lg n n2

n2 Ω Ω Θ

n1.5

√
2n

f(n)

n
√

lg n

n log30 n

n3



6.006 Quiz 1 Name 3

Problem 2. Table of Speed [20 points]

For each of the representations of a set of elements along the left side of the table, write down the
asymptotic running time for each of the operations along the top. For hashing, give the expected
running time assuming simple uniform hashing; for all other data structures, give the worst-case
running time. Give tight asymptotic bounds using Θ notation. If we have not discussed how to
perform a particular operation on a particular structure, answer for the most reasonable implemen-
tation you can imagine.

Operation

Insert Extract-min Contains Minimum

Unsorted
linked list

Sorted
linked list

Data
Structure Min heap

Max heap

Hashing with
chaining and
α = 1

Definitions of operations:

• Insert(S, x): add element x to the set S.

• Extract-min(S): remove the minimum element from the set S and return it.

• Contains(S, x): return whether element x is in the set S.

•Minimum(S): return the minimum element in set S (without extraction).



6.006 Quiz 1 Name 4

Problem 3. Indie heap operations [15 points] (2 parts)

(a) [10 points] Suppose you have a max-heap stored in an arrayA[1..n], whereA[1] stores
the maximum element. Give pseudocode for an efficient algorithm to implement the
operation find-second-maximum(A), which finds the next-to-largest key stored in the
max-heap A. Your algorithm should not modify the heap.

(b) [5 points] Suppose you have an array A[1..n] of n elements in arbitrary order. Does
the following alternate implementation of build-max-heap work? In other words, does
it correctly build a max heap from the given elements A[1..n]? Why or why not?

build-max-heap(A):
for i from 1 to n/2:

max-heapify(A, i)

This algorithm calls heapify starting at the root and working its way down the tree,
instead of the other way around.



6.006 Quiz 1 Name 5

Problem 4. Madly merging many menus [30 points] (2 parts)

Professor Sortun uses the following algorithm for merging k sorted lists, each having n/k elements.
She takes the first list and merges it with the second list using a linear-time algorithm for merging
two sorted lists, such as the merging algorithm used in merge sort. Then, she merges the resulting
list of 2n/k elements with the third list, merges the list of 3n/k elements that results with the
fourth list, and so forth, until she ends up with a single sorted list of all n elements.

(a) [10 points] Analyze the worst-case running time of the professor’s algorithm in terms
of n and k.



6.006 Quiz 1 Name 6

(b) [20 points] Briefly describe an algorithm for merging k sorted lists, each of length
n/k, whose worst-case running time is O(n lg k). Briefly justify the running time
of your algorithm. (If you cannot achieve O(n lg k), do the best you can for partial
credit.)



6.006 Quiz 1 Name 7

Problem 5. Being Adel’son-Vel’skiı̆ & Landis [10 points]

Suppose that we insert 42 into the AVL tree below using the AVL insertion algorithm. On the next
page, show the resulting tree after rebalancing. We also recommend showing intermediate steps
for partial credit.

60

30

70 9510

20

50 90

40

99

75

For reference, we include the Python code for AVL insertion, written in terms of rotations:

def insert(self, t):
node = bst.BST.insert(self, t)
while node is not None:

if height(node.left) >= 2 + height(node.right):
if height(node.left.left) >= height(node.left.right):

self.right_rotate(node)
else:

self.left_rotate(node.left)
self.right_rotate(node)

elif height(node.right) >= 2 + height(node.left):
if height(node.right.right) >= height(node.right.left):

self.left_rotate(node)
else:

self.right_rotate(node.right)
self.left_rotate(node)

node = node.parent



6.006 Quiz 1 Name 8

60

30

70 9510

20

50 90

40

99

75

Initial AVL tree



6.006 Quiz 1 Name 9

Problem 6. Honey, I shrunk the heap [15 points]

Suppose we have a heap containing n = 2k elements in an array of size n, and suppose that we
repeatedly extract the minimum element, n times, never performing insertions. To make the heap
space efficient, we move the heap over to an array of size 2j whenever an extraction decreases the
number of elements to 2j for any integer j. Suppose that the cost of each such move is Θ(2j).
What is the total movement cost caused by n extract-mins starting from the heap of n elements?
(Ignore the Θ(n lg n) cost from the heapify operations themselves.)



6.006 Quiz 1 Name 10

Problem 7. Trash hees [15 points] (2 parts)

Suppose we store n elements in an m-slot hash table using chaining, but we store each chain (set
of elements hashing to the same slot) using an AVL tree instead of a linked list. Also suppose that
m = n, so the load factor α = n/m = 1.

(a) [5 points] What is the expected running time of insert, delete, and search in this hash
table? Why? Assume simple uniform hashing.

(b) [10 points] What is the worst-case running time of insert, delete, and search in this
hash table? Why? (Do not assume simple uniform hashing.)



SCRATCH PAPER



SCRATCH PAPER


