Introduction to Algorithms October 13,2010
Massachusetts Institute of Technology 6.006 Fall 2010
Professors Konstantinos Daskalakis and Patrick Jaillet Quiz 1

Quiz 1

e Do not open this quiz booklet until directed to do so. Read all the instructions on this page.

e When the quiz begins, write your name on every page of this quiz booklet.

e You have 120 minutes to earn 120 points. Do not spend too much time on any one problem.
Read them all through first, and attack them in the order that allows you to make the most
progress.

e This quiz is closed book. You may use one 8%” x 11" or A4 crib sheet (both sides). No
calculators or programmable devices are permitted. No cell phones or other communications
devices are permitted.

e Write your solutions in the space provided. If you need more space, write on the back of the
sheet containing the problem. Pages may be separated for grading.

e Do not waste time and paper rederiving facts that we have studied. It is sufficient to cite
known results.

e When writing an algorithm, a clear description in English will suffice. Pseudo-code is not
required.

e When asked for an algorithm, your algorithm should have the time complexity specified in
the problem with a correct analysis. If you cannot find such an algorithm, you will generally
receive partial credit for a slower algorithm if you analyze your algorithm correctly.

e Show your work, as partial credit will be given. You will be graded not only on the correct-
ness of your answer, but also on the clarity with which you express it. Be neat.

e Good luck!

Problem \ Parts \ Points \ Grade \ Grader ‘

1 2 2
2 3 20
3 9 18
4 1 20
5 3 20
6 5 20
7 1 20

Total 120

Name:
Friday Aleksander Arnab Alina Matthew

Recitation: 11 AM 12 PM 3IPM 4 PM

6.006 Quiz 1 Name

Problem 1. What is Your Name? [2 points] (2 parts)

(a) [1 point] Flip back to the cover page. Write your name there.

(b) [1 point] Flip back to the cover page. Circle your recitation section.

6.006 Quiz 1 Name

Problem 2. Asymptotics & Recurrences [20 points] (3 parts)

(a) [10 points] Rank the following functions by increasing order of growth. That is, find
any arrangement g1, g2, g3, 94, gs, g6, g7, gs of the functions satisfying g1 = O(gz),

g2 = 0(g3), g3 = O(g4), 91 = O(g5), g5 = O(gs)> g6 = O(g7), g7 = O(gg).
filn) =nlog’n fo(n) =n+/nlog'n fy(n) = (Z> fa(n) = (7173)

n

)= (1) st =2 o) = o) = ()

(b) [5 points] Find an asymptotic solution of the following functional recurrence. Express
your answer using ©-notation, and give a brief justification.

T(n) =16 -T(n/4) +n*log’n

6.006 Quiz 1 Name

(¢) [5 points] Find an asymptotic solution of the following recurrence. Express your
1
answer using ©-notation, and give a brief justification. (Note that nisn = 1.)

6.006 Quiz 1 Name

Problem 3. True/False [18 points] (9 parts)

Circle (T)rue or (F)alse. You don’t need to justify your choice.

(@) T F [2 points] Inserting into an AVL tree can take o(logn) time.

(b) T F [2 points] If you know the numbers stored in a BST and you know the structure
of the tree, you can determine the value stored in each node.

(¢ T F [2 points] In max-heaps, the operations insert, max-heapify, find-max, and find-
min all take O(log n) time.

(d) T F [2points] When you double the size of a hash table, you can keep using the same
hash function.

6.006 Quiz 1 Name

() T F [2points] We can sort 7 numbers with 10 comparisons.
(f) T F [2 points] Merge sort can be implemented to be stable.

(g T F [2points] If we were to extend our O(n) 2D peak finding algorithm to four di-
mensions, it would take O(n?) time.

(h) T F [2points] A ©(n?) algorithm always takes longer to run than a ©(logn) algo-
rithm.

(i) T F [2 points] Assume it takes ©(k) time to hash a string of length k. We have a
string of length n, and we want to find the hash values of all its substrings that
have length k using a division hash. We can do this in O(n) time.

6.006 Quiz 1 Name 7

Problem 4. Runway Reservation Modifications [20 points] (1 part)

Recall the Runway Reservation system used in Problem Set 2, where we wanted to schedule flight
landing times so that each scheduled landing was at least 3 minutes away from the others. We
would like to expand the functionality of this system to deal with more types of requests.

Suppose that we have a valid schedule setup already, but as the flights are landing according to
this schedule, at some time ¢; there is a plane that requests an immediate emergency landing. Of
course, we want to accommodate such a request immediately, thus we schedule this plane to land
at time ¢,. However, this landing might cause collisions with the flights that are scheduled to land
after ¢;. (It might also cause collision with the flight scheduled to land just before ¢, but since
this flight already landed, there is nothing we can do about this and we ignore this fact.) To adjust
the schedule to this disruption, we want to shift (if necessary) the landing times of the flights
scheduled to land after ¢; to make sure that each subsequent landing happens at least 3 minutes
after the previous one. (Note that we want to preserve the order of landing times from the original
schedule.)

For example, assuming a window of 3 minutes with flights at times 28, 31, 34, 37, 40, 46, 49, 53,
57, 60, attempting to insert an emergency flight at time 32 would cause a new set of flights at times
28, 31, 32, 35, 38, 41, 46, 49, 53, 57, 60. In this case we would say three flights needed adjusting
- 34, 37, and 40 - to accommodate the emergency landing.

Give an algorithm to find the minimum number of adjustments needed. This algorithm should find
only the number of flight times requiring adjusting; it does not need to perform the flight updates.
Full points will be given for an algorithm that runs in time polynomial in logn i.e. in time being
O(log®n) for some constant c. More credit will be given to more efficient solutions, as long as
their runtime is correctly analyzed. You may use data structure augmentations provided that you
explain the augmentation. Its maintenance may not increase the asymptotic running time of other
operations but you are not required to prove this.

6.006 Quiz 1 Name 8

Problem 5. Computing Fibonacci numbers [20 points] (3 parts)

The Fibonacci numbers are defined by the following recurrence: Fy = 0, Fy = 1, F;, = F; 1 +
F; 5 fort > 2, yielding the sequence 0,1,1,2,3,5,8,13,21,34,55,... There is a closed-form
formula for F,, given by F,, = w, where ¢ = (1 + v/5)/2 ~ 1.618 is the golden ratio.
However, this formula isn’t practical for computing the exact value of F), as it would require
increasing precision on v/5 and ¢ as n increases. In this problem we are interested in obtaining
practical algorithms for computing the n** Fibonacci number F}, for any given n. Assume that
the cost of adding, subtracting, or multiplying two integers is O(1), independent of the size of the
integers we are dealing with.

(a) [5 points] From the recurrence definition of the Fibonacci sequence, one can use the
following simple recursive algorithm:
FIB1(n):
if n <1 then
return n
else
r«— FIBl1(n—1)
y«— FIB1(n—2)
return x +y
end if

Give the running time of this algorithm. Express your answer using O-notation.

(b) [5 points] Give an algorithm that computes F,, in ©(n) and justify its running time.

6.006 Quiz 1 Name

(¢) [10 points] Consider the matrix A = 01 . Show that fori > 1, A* = Fi B .
11 Fi Fi

From the fact that A% = (A")2, and A* ! = Ax(A%)?, use divide and conquer to show
that A™ can be calculated in time ©(log n). Conclude by giving a ©(log n) algorithm
for computing F,.

6.006 Quiz 1 Name 10

Problem 6. One Hash, Two Hash [20 points] (4 parts)

We talked in class about two methods for dealing with collisions: chaining and linear probing.
Cornelius Beefe decided to come up with his own method. He creates two hash tables 77 and
T5, each of size m, and two different hash functions h; and h and decides to use 75 to resolve
collisions in 77. Specifically, given an element z, he first calculates h;(x) and tries to insert = into
T. If there is a collision, he calculates h(x) and inserts x into T5.

(a) [4 points] Assume 75 uses chaining to deal with collisions. Given an element y, give
an algorithm for deciding whether or not y is in the hash table.

(b) [2 points] Cornelius tries using the following hash functions for each table:
1) hi(z) = (a1)® mod m for table T}
2) hs(x) = (az)® mod m for table T5

He first tries a; = a9 and uses chaining in table 75. Is this likely to result in fewer
collisions than if he had just used one hash table of size m with chaining?

6.006 Quiz 1 Name

(¢) [4 points] Assume m = 21. Circle the set of values that will result in the fewest
collisions in T, and explain why you chose it.
(1) ag =9,a: =5
2) ap=5,a0=7
3) ag =4,a, =16
4) ay =13,a, =11

(d) [10 points] Consider the case in which 75 uses linear probing to deal with collisions.
Also, assume that both A, and hs satisfy the simple uniform hashing assumption. We
insert 4 elements. What is the probability that while inserting the fourth element there

are at least two collisions? (In this count we include the collisions that occur in table
1)

11

6.006 Quiz 1 Name 12

Problem 7. Extreme Temperatures [20 points] (1 part) Professor Daskalakis is interested in
studying extreme temperatures on the Arctic Cap. He placed temperature-measuring devices at m
locations, and programmed each of these devices to record the temperature of the corresponding
location at noon of every day, for a period of n days. Moreover, using techniques that he learned
while preparing the Heapsort lecture, he decided to program each device to store the recorded
temperatures in a max-heap. To cut a long story short, Prof. Daskalakis now has m devices that he
collected from the Arctic Cap, each of which contains in its hard-drive a max-heap of n elements.
He now wants to compute the ¢ largest temperatures that were recorded by any device, e.g., if
m = 2,n = 5, ¢ =5, and the two devices recorded temperatures (—10, —20, —5, —34, —7) and
(—13,—-19, -2, —3, —4) respectively, the desired output would be (—2, —3, —4, —5, —7). Can you
help your professor find the ¢ largest elements in O(m + ¢ log ¢) time? Partial credit will be given
for less efficient algorithms, as long as the run-time analysis is correct.

SCRATCH PAPER

SCRATCH PAPER

