
6.006 Introduction to Algorithms Recitation 11 October 21, 2011

Principles of Algorithm Design
When you are trying to design an algorithm or a data structure, it’s often hard to see how to
accomplish the task. The following techniques can often be useful:

1. Experiment with examples. One of the most important things you can do to get a feel for
how a problem works is to try generating some random input and seeing what output you
should be returning. This helps you understand the problem, and can often given you a feel
for how the solution can be constructed. If you experiment with enough small examples,
you can often begin to see a pattern in the way that the solution looks in relation to the input.
Once you understand that pattern, you are one step closer to being able to solve the problem.

2. Simplify the problem. Sometimes, when a problem is difficult to solve, it can be worth it to
solve a related, simpler problem instead. Once you develop ideas for the simpler case, you
can often apply them to handle the more complex case.

Instead of trying to solve the problem in all generality, see if you can solve it for just a subset
of the inputs. For instance, if the algorithm you are trying to design takes two inputs (such as
two numbers n and k), you might consider trying to solve the problem if you set k equal to
a small constant, such as 1 or 2. If the algorithm takes a list as an argument, does assuming
that the list is sorted help you figure out the problem? What about assuming that all items in
the list are distinct? Or assuming that the number of items in the list is a power of 2? Failing
that, are there other assumptions you could make that would make the problem simpler?

Once you have simplified the problem and solved it, you need to figure out how to make
the algorithm more general again. But at this point, you have solved a similar (if simpler)
problem, so you can often take advantage of . . .

3. Look for similar problems. For many of the questions in this course, the solution involves
an algorithm or data structure that you have seen before. Even when considering other
questions, it’s often possible to draw inspiration from problems that you know how to solve.
So if the problem that you are considering seems similar to a problem that you know how
to solve, a good first step is to think about how the problems compare to each other. What
properties do the problems share? What causes them to be different? Are the differences
significant? Are the commonalities easy to see, or is it more of a stretch? Is one problem a
more restricted version of the other? A more general version of the other? Or does it seem
more general in some ways and more restricted in others?

Once you understand how the problems relate to each other, think about the techniques that
you used to solve the problem you understand. Can you reuse the same algorithm to solve
the problem? If not, can you tweak some of the details a little to get a working solution? A
lot of algorithms are based around particular techniques — for instance, you’ve seen several
divide-and-conquer solutions, wherein you try to divide up the input into smaller pieces,
then put the pieces back together again once you use a recursive call to solve the individual
pieces. Try figuring out what techniques were used to solve the known problem, and then
see whether you can apply them to the new problem as well.

6.006 Introduction to Algorithms Recitation 11 October 21, 2011

4. Delegate the work. One very powerful concept in Computer Science is the idea of recursion.
At its heart, recursion lets us solve problems more easily by delegating the difficult work to
a recursive call. For instance, say that we want to compute n!. Well, that’s pretty hard to
compute. But if we knew (n− 1)!, it would magically become a lot easier to compute n!. So
we use a recursive call to compute (n − 1)!, and then use the result of that recursive call to
compute n!.

If you can’t figure out how to solve a problem, see if you can figure out how to solve only
the last bit of it. Then see if you can use recursion to solve the rest of it. Pretty much all
of the algorithms you’ve seen are based around this principal, so being able to apply it is a
very useful skill. For ideas of how to break the problem into pieces, and ideas on how to
define “the last part” of the problem, you can often look at the algorithms that you’ve already
seen. For instance, a common thing to do involving lists is to split them in two and solve the
problem recursively on both halves. If you can figure out a good way to break the list apart
and then put it back together again when you’re done, that’s all you need.

5. Design according to the runtime. Sometimes the runtime that we give you provides a lot
of information about what you should be doing to construct the algorithm. For instance, say
that you are designing an algorithm whose runtime should be O(log n). The algorithms and
data structures we know of that have that runtime are binary search, heaps, and AVL trees.
(Note, however, that the cost of constructing a heap or an AVL tree is high enough that it
most likely cannot be used for any algorithms with runtime O(log n). But they might be
used in data structure design to implement functions that should take time O(log n).)

If none of those seem useful, consider some simple recurrence relations that resolve to the
value you’re searching for. For instance, say that you know that the algorithm takes time
O(n log n), but that the common O(n log n) algorithms you know don’t seem to work. There
are a couple of simple recurrence relations that resolve to this, such as:

• T (n) = O(log n) + T (n − 1). This could be n binary searches, or n operations on a
heap or an AVL tree.

• T (n) = O(n) + 2T (n/2). This might be an O(n) pass to separate the data into two
groups, and then an O(n) pass to put the data back together again at the end.

Maintaining Medians
Say now that we wish to solve the following problem, taken from the Spring 2008 Final Exam:

Your latest and foolproof (really this time) gambling strategy is to bet on the median
option amount your choices. That is, if you have n distinct choices whose sorted order
is c[1] < c[2] < · · · < c[n], then you bet on choice c[b(n + 1)/2c]. As the day goes
by, new choices appear and old choices disappear; each time, you sort your current
choices and bet on the median. Quickly you grow tired of sorting. You decide to
build a data structure that keeps track of the median as your choices come and go.

6.006 Introduction to Algorithms Recitation 11 October 21, 2011

Specifically, your data structure stores the number n of choices, the current median m,
and two AVL trees S and T , where S stores all choices less than m and T stores all
choices greater than m.

(a) Explain how to add a new choice cnew to the data structure, and restore the invari-
ants that (1) m is the median of all current choices; (2) S stores all choices less
than m; and (3) T stores all choices greater than m. Analyze the running time of
your algorithm.

(b) Explain how to remove an existing choice cold from the data structure, and restore
invariants (1-3) above. Analyze the running time of your algorithm.

Because the data structure we are using is already given to us, most of the techniques above
do not apply. We do not have complete freedom in handling the problem at hand. But there’s one
technique that can always be used: experimenting with examples. So let’s do that now. Say that
we start with the list [1, 5, 7, 10, 16, 31, 42]. The median of this list is 10; the numbers less than 10
are 1, 5, 7 and the numbers greater than 10 are 16, 31, 42. Let (m1, S1, T1) be the initial state of the
data structure. Then m1 = 10, S1 contains [1, 5, 7], and T1 contains [16, 31, 42].

What happens if we insert the number 12? Now the new sorted list is [1, 5, 7, 10, 12, 16, 31, 42].
Let (m2, S2, T2) be the new state of the data structure. Then m2 = 10, S2 contains [1, 5, 7], and T2

contains [12, 16, 31, 42]. This means that m1 = m2 and S1 = S2, and we handled the new number
by adding it to T . Does this work as a general technique? Obviously not — T should consist of
all number greater than the median, so if we insert a number less than the median, adding it to T
would be a mistake.

But maybe it works to just add all numbers greater than the median to T . To verify this, let’s try
adding another number greater than m = 10 to the list — say cnew = 37. Then the new sorted list
is [1, 5, 7, 10, 12, 16, 31, 37, 42]. If (m3, S3, T3) is the new state of the data structure, then m3 = 12,
S3 contains [1, 5, 7, 10], and T3 contains [16, 31, 37, 42]. This is completely different. We did add
cnew = 37 to T , but we also removed the number 12 from T . We also changed the median from 10
to 12, and added the number 10 to S. There’s a bit of a pattern here, actually — it looks like we
set m3 to the value we removed from T , and added m2 to S.

Some more experimentation with small examples would reveal a couple of patterns in this.
When a new item is added, it usually gets added to T if it’s greater than the current median and
usually gets added to S if it’s less than the current median. When the median changes, it usually
becomes either the minimum item in T , or the maximum item in S. Once everything has been
updated correctly, the number of items in S is never more than |T |, and the number of items in T
is never more than 1 + |S|.

These patterns suggest that the algorithm should probably contain the following steps, in some
order:

• If cnew < m, add cnew to S. Otherwise, add cnew to T . (Unless cnew becomes the new median,
which is kind of a special case.)

6.006 Introduction to Algorithms Recitation 11 October 21, 2011

• If the median needs to change, do one of the following: (1) Add m to T , set m = max(S),
and remove the new m from S. (2) Add m to S, set m = min(T), and remove the new m
from T . (Or set m = cnew, which is kind of a special case.)

• If |S| > |T | or |T | > 1 + |S|, do something to fix this.

The third instruction is partial — it’s missing information on what should be done to fix the sizes
of S and T . The second instruction is also missing a bit of information — how exactly do we tell
when the median has changed? So why not try putting the two steps together? Now we have the
following steps:

• If cnew < m, add cnew to S. Otherwise, add cnew to T .

• If |S| > |T |, add m to T , set m = max(S), and remove the new m from S. If |T | > 1 + |S|,
add m to S, set m = min(T), and remove the new m from T .

Those two steps, in the order given above, happen to be exactly what we want.
We can verify this by checking it on a number of small examples, or by thinking about the

definition of median. Both steps preserve invariants (2) and (3), given how we select the new
median m. To see that the median is always stored in m, it’s sufficient to think about the sizes of
S and T over time. If |T | = |S| or |T | = |S| + 1, then we have n = 1 + |S| + |T | and so either
n = 1 + 2|S| or n = 2 + 2|S|. Either way, we have b(n + 1)/2c = 1 + |S|, and therefore m is the
median. Hence, in either of those cases, there is no need to update the median.

Otherwise, we know that |T | < |S| or |T | > |S| + 1. However, in the previous step the
median was computed correctly, so we had |Told| = |Sold| or |Told| = |Sold| + 1. The addition of
cnew only changed the size of one of the two sets by 1. Now say that |T | < |S|. Then because
|Told| ≥ |Sold| and only one of those sizes could have increased, we know that |T | = |S| − 1. So
when the second step is performed, removing a number from S and adding a number to T , we get
|Snew| = |S| − 1 = |T |, and |Tnew| = |T | + 1 = |Snew| + 1, which makes the median correct. A
similar argument holds when |T | > |S|+ 1. So the algorithm does maintain invariant (1).

What is the runtime of this? Each step performs a constant number of arithmetic operations
and a constant number of insertions and deletions in an AVL tree, for a total of Θ(log n) time in
the worst case.

Once we understand how to do insertions, the solution for deletions also becomes apparent.
The second step of the algorithm for insertions acts as a way to rebalance the structure, restoring
the median when the sizes of S and T changed by at most 1. Therefore, the second step of the
algorithm works just as well when deleting a single element of the data structure.

Rotated Array
Say that we are trying to solve the following problem, taken from the Spring 2011 Final Exam:

Consider an array A[1 · · ·n] constructed by the following process: we start with n
distinct elements, sort them, and then rotate the array k steps to the right. For example,

6.006 Introduction to Algorithms Recitation 11 October 21, 2011

we might start with the sorted array [1, 4, 5, 9, 10], and rotate it right by k = 3 steps to
get [5, 9, 10, 1, 4]. Give an O(log n)-time algorithm that finds and returns the position
of a given element x in array A, or returns None if x is not in A. Your algorithm is
given the array A[1 · · ·n] but does not know k.

Several of the techniques listed above apply in this case, and most of them suggest the same
approach. We are trying to find a number in an array that is somehow “close” to being sorted. We
know how to do that: we use binary search. And binary search just so happens to have a runtime
of O(log n), which exactly what we want. Indeed, if k = 0, then the array is completely sorted,
and binary search works fine.

Ideally, we would like to do binary search even in cases where k 6= 0. But binary search
requires a sorted array. The array we have is close to being sorted, but every single one of the
items in the array is shifted over by some unknown amount k. This seems rather difficult to cope
with, so let’s try a simplification: what happens if we know k? Then we know that the array
consists of two pieces: A[1 · · · k] is the last part of the sorted sequence, and A[(k + 1) · · ·n] is
the first part of the sorted sequence. As a result, A[(k + 1) · · ·n] concatenated with A[1 · · · k] is a
sorted array. This means that the two individual pieces are each sorted as well. And we know how
to find numbers in a sorted array: binary search. So we can solve the problem by performing two
binary searches: one on A[1 · · · k], and one on A[(k + 1) · · ·n]. (We can even improve the constant
by comparing x to A[1] to determine which of the two subarrays to look at, so that we only perform
one binary search.)

Therefore, we’ve solved a simplified problem. If we only knew k, we’d be set. So if we want
to solve this problem, we need only develop an algorithm to find k. This algorithm needs to run
in O(log n) time. What do we know that runs in O(log n) time? Binary search does, but since we
don’t have a sorted array, we need to do something different. Still, the structure of the algorithm
might very well mimic that of binary search: examine a constant number of places in the array
(binary search examines one, but the runtime bound would let us look at more), and then use the
information gleaned to pick one half of the array to recurse on.

Which items in the array should we examine? Given that we want to mimic binary search, we
should probably look at the middle element m = b(n + 1)/2c, and compare it to some value. We
want to use this to find k, so we should probably consider the difference between the case where
k < m and the case where k > m. More specifically, we would like to find some other item in the
array that, when compared to the middle element, tells us which side k lies on. So let’s consider
both cases.

First, say that k < m. Then the items in the array in sorted order are:

A[k + 1] < . . . < A[m] < . . . < A[n] < A[1] < . . . < A[k]

If instead k > m, then the items in sorted order are:

A[k + 1] < . . . < A[n] < A[1] < . . . < A[m] < . . . < A[k]

The difference in the rankings gives us a clear way to figure out which side of the array k lies in:
k < m if and only if A[m] < A[1]. This requires the examination of a constant number of items in
the array. Therefore, we may find k in O(log n) time.

6.006 Introduction to Algorithms Recitation 11 October 21, 2011

kth minimum in min-heap
Now say that we wish to solve the following problem, taken from the Fall 2009 Final Exam:

Present an O(k log k) time algorithm to return the kth minimum element in a min-heap
H of size n, where 1 ≤ k ≤ n. Partial credit will be given to less efficient solutions
provided your complexity analysis is accurate.

This problem doesn’t seem to share any commonalities with any problems we’ve seen previ-
ously. The runtime gives some hints — it looks like we might be sorting k items or performing k
operations on a heap or an AVL tree of size k. But k is potentially far smaller than the size n of the
data, so how to do we figure out which k items we want to sort or insert in our data structure?

If we simplify the problem by setting k = 1, it becomes easy: we’re looking for the minimum
element, and we can find it in O(1) time by looking at the root of H . But that seems like an over-
simplification, because the location of the kth smallest element is not going to be so easy to find.
Or is it? Let’s look at some small examples, and see where the smallest numbers are within those
examples. That could give us a clue as to how to find the kth smallest number.

1

2 5

6 8 11 20

21 25 26 27 28 31 41 42

#1

#2 #3

The heap above looks promising. The smallest number, of course, is at the root. The second
smallest number is its left child, the third smallest number is its right child, the fourth smallest
number is the left child of the left child, and so on. This seems convenient — if this held for all
heaps, we would be able to find the kth largest element easily. So does this hold for all heaps?
Consider the following example:

1

2 26

6 5 27 35

20 11 8 25 28 31 41 42

#1

#2

#3

Now the smallest three are the root, its left child, and the right child of the left child. So we cannot
count on the top three items to be in the top two rows of the array. But further experimentation

6.006 Introduction to Algorithms Recitation 11 October 21, 2011

with heaps of this size does reveal some information: the smallest three items always seem to lie
in the top three levels of the heap.

Why might this be true in general? An item x on the ith level of the heap has i − 1 ancestors
in the heap. The heap property ensures that each of those i − 1 ancestors is strictly smaller than
x. Therefore, any x at a level i ≥ k + 1 has k ancestors that are strictly smaller, and so x cannot
be in the k smallest items. This means that we need only examine the top k levels of the heap to
find the items we want. Is that sufficient? Well, consider how many items there are in the top k
levels. Each level has twice the number of items as the level before, so the kth level will have 2k−1

elements. In total, the first k levels will have 2k − 1 elements. So examining all of those elements
will not let us achieve the desired runtime.

We have to be a bit more clever than that. Let’s think again about the ancestors of some node x.
All of x’s ancestors must be strictly less than x, because of the invariants maintained by the heap.
Say that x is the kth smallest. Then because x’s parent is strictly smaller than x, x’s parent must
be one of the k − 1 smallest items in the heap. In other words, an item can be the kth smallest if
and only if its parent is among the smallest k − 1 elements.

This feels a lot like recursion — if we could only find the k−1 smallest elements, we’d be able
to look at all of their children to find the kth smallest element. But how do we do this efficiently? If
we have to search through all 2(k− 1) children of the k− 1 smallest nodes to find the kth smallest
node, then we’re spending Θ(k2) time in total. How can we make this process faster?

At every step, we’re considering a set of “candidate” kth smallest values, and picking the
smallest of them. When we find the kth smallest value, we know that it is no longer a candidate
for the (k + 1)th smallest value, but that its children are now candidates. Other than that, the set
of candidates doesn’t actually change. This sounds like a good place to use a data structure that
we’ve seen before: a min-heap. So this means that the overall algorithm we have is:

KTH-SMALLEST(H, k)

1 I = MIN-HEAP()
2 HEAP-INSERT(I, (H[0], 0))
3 for j = 1 to k
4 (v, i) = HEAP-EXTRACT-MIN(I)
5 if j = k
6 return v
7 ` = HEAP-LEFT-CHILD(H, i)
8 HEAP-INSERT(I, (H[`], `))
9 r = HEAP-RIGHT-CHILD(H, i)

10 HEAP-INSERT(I, (H[r], r))

What is the runtime of this algorithm? Each iteration of the loop performs several heap operations
on the heap I . The size of I is always O(k), so the runtime of each iteration of the loop is O(log k).
Hence, with k iterations, the total runtime is O(k log k).

6.006 Introduction to Algorithms Recitation 11 October 21, 2011

Storing Partial Maxima
Say that we are trying to solve the following problem, taken from the Fall 2010 Final Exam:

6.006 student, Mike Velli, wants to build a website where the user can input a time
interval in history, and the website will return the most exciting sports event that oc-
curred during this interval. Formally, suppose that Mike has a chronologically sorted
list of n sports events with associated integer “excitement factors” e1, . . . , en. You can
assume for simplicity that n is a power of 2. A user’s query will consist of a pair (i, j)
with 1 ≤ i < j ≤ n, and the site is supposed to return max(ei, ei+1, . . . , ej).

Mike wishes to minimize the amount of computation per query, since there will be
a lot of traffic to the website. If he precomputes and stores max(ei, . . . , ej) for every
possible input (i, j), he can respond to user queries quickly, but he needs storage Ω(n2)
which is too much.

In order to reduce storage requirements, Mike is willing to allow a small amount of
computation per query. He wants to store a cleverer selection of precomputed values
than just max(ei, . . . , ej) for every (i, j), so that for any user query, the server can
retrive two precomputed values and take the maximum of the two to return the final
answer. Show that now only O(n log n) values need to be precomputed.

We may glean our first clue about how to solve this problem by examining not the runtime,
but the space requirements. Consider the recurrence relations that might be associated with total
space Θ(n log n), If we have T (n) = O(log n) + T (n − 1), that means that we must be storing
structures of size O(log n). We don’t know any such structures. So it’s far more likely to be the
other common recurrence relation: T (n) = O(n) + 2T (n/2).

This suggests an approach wherein we build recursive data structures for each half of the list,
then supplement it with Θ(n) extra information to handle the cases tha occur when we merge.
Barring any other information about how to divide the list in two, we might just split the list so that
e1, . . . , en/2 goes in one half, and en/2+1, . . . , en goes in the other half.

At this point, we take advantage of the power of recurrences. Let’s say that we have two
data structures S and T , where S can answer partial maxima queries on e1, . . . , en/2 by taking the
maximum of at most two values, and T can answer partial maxima queries on en/2+1, . . . , en by
taking the maximum of at most two values. How can we use S and T to be able to answer all
partial maxima queries on e1, . . . , en?

Say that we are given some (i, j) and want to calculate max(ei, . . . , ej). Thanks to the power
of recursion, there are some very easy cases to handle. If 1 ≤ i < j ≤ n/2, then we can simply
pass the query along to S and call it a job well done. Similarly, if n/2 + 1 ≤ i < j ≤ n, then we
can simply pass the query along to T and return whatever result. So the troublesome case occurs
when i ≤ n/2 < n/2 + 1 ≤ j.

Can we store Θ(n) information to let us handle this troublesome case? There are n/2 distinct
values for i and n/2 distinct values for j, so we can’t simply store the answer for all choices of
(i, j). In fact, because we’re limited to Θ(n) space, we know that for most values of 1 ≤ i ≤ n/2,

6.006 Introduction to Algorithms Recitation 11 October 21, 2011

we can only store max(ei, . . . , ej) for a constant number of indices j. Similarly, for most values of
n/2 + 1 ≤ j ≤ n, we can only store max(ei, . . . , ej) for a constant number of indices i.

This means that we need some clever way of choosing what to store so that we can always
answer a query max(ei, . . . , ej) by taking the max of two items, as long as i ≤ n/2 < n/2+1 ≤ j.
(For other values of i and j, we assume that the recursive data structures will work properly.)
Because of the way the max function works, if we have two sets A and B, then max(A ∪ B) =
max(max(A), max(B)). So we wish to split ei, . . . , ej into two pieces.

To make sure that we don’t have to store too much information, the values in the piece Ai

should depend only on i, and the values in Bj should depend only on j. If Ai contains any ek

where k > n/2 + 1, then depending on the value of j, ek might not belong in the set {ei, . . . , ej}.
So all items ek ∈ Ai should have k ≤ n/2 + 1. Similarly, all items ek ∈ Bj should have k ≥ n/2.
Therefore, to make sure that {ei, . . . , ej} = Ai ∪ Bj , we must have {ei, . . . , en/2−1} ⊆ Ai and
{en/2+2, . . . , ej} ⊆ Bj . For simplicity, say that Ai = {ei, . . . , en/2} and Bj = {en/2+1, . . . , ej}.
Then for any choice of i and j, we have Ai ∪Bj = {ei, . . . , ej}.

What does this mean for our algorithm? It means that the Θ(n) values we want to store to
answer those queries that we can’t pass along to the recursive structures consist of max(Ai) for all
1 ≤ i ≤ n/2 and max(Bj) for all n/2 + 1 ≤ j ≤ n. Then we can take the maximum of two values
to compute the maximum of the interval {ei, . . . , ej} = Ai ∪Bj .

