
6.006 Introduction to Algorithms Recitation 9b October 12, 2011

Matching DNA Sequences
Today we will look at the code structure of the DNA sequence matching problem in PSet 4.

A DNA sample is represented as a sequence of characters such as A, G, C, T in upper case
which represent the nucleotides. Given two DNA sequences, we want to see how similar they are.
So for a subsequence of length k in one DNA sample, we want to find whether it occurs in the
other DNA sample, and if it does, we also want to see whether it occurs at the similar position. We
also want to do this for all the possible subsequences of length k.

1 # The arguments are, in order: 1) Your getExactSubmatches
2 # function, 2) the filename to which the image should be written,
3 # 3) a tuple giving the width and height of the image, 4) the
4 # filename of sequence A, 5) the filename of sequence B, 6) k, the
5 # subsequence size, and 7) m, the sampling interval for sequence
6 # A.
7 compareSequences(getExactSubmatches, sys.argv[3], (500,500), sys.argv[1],
8 sys.argv[2], 8, 100)

1 def compareSequences(getExactSubmatches, imgfile, imgsize, afile, bfile, k, m):
2 a = kfasta.FastaSequence(afile)
3 b = kfasta.FastaSequence(bfile)
4 matches = getExactSubmatches(a, b, k, m)
5 buildComparisonImage(imgfile, imgsize[0], imgsize[1],
6 kfasta.getSequenceLength(afile),
7 kfasta.getSequenceLength(bfile), matches)

The main function calls compareSequences. In compareSequences, it creates two
FastaSequences a and b which are the inputs to getExactSubmatches that you need to
implement.

Python Iterator
A FastaSequence is an iterator that returns the nucleotide sequence stored in the given FASTA
file. In Python, an iterator object is required to support the following two methods, which together
form the iterator protocol.

• iterator. iter (): Returns the iterator object itself. This allows iterators to be
used with the for and in statements.

• iterator.next(): Returns the next item. If there are no further items, raise the StopIteration
exception.

Let’s see how these two methods are implemented in FastaSequence. Because the file is
very big, it only reads one line of the file a time and stores it in self.buf. This is more memory
efficient than reading the entire file into the memory. Calling next() returns and removes the
first element in self.buf, and when self.buf is empty, another line is read. It raises an
StopIteration exception when the end of the file is reached.



6.006 Introduction to Algorithms Recitation 9b October 12, 2011

1 # An iterator that returns the nucleotide sequence stored in the given FASTA file.
2 class FastaSequence:
3 def __init__(self, filename):
4 self.f = open(filename, ’r’)
5 self.buf = ’’
6 self.info = self.f.readline()
7 self.pos = 0
8 def __iter__(self):
9 return self

10 def next(self):
11 while ’’ == self.buf:
12 self.buf = self.f.readline()
13 if ’’ == self.buf:
14 self.f.close()
15 raise StopIteration
16 self.buf = self.buf.strip()
17 nextchar = self.buf[0]
18 self.buf = self.buf[1:]
19 self.pos += 1
20 return nextchar

Python Generator
The first method you need to implement is subsequenceHashes(seq, k) which returns all
k-length subsequences and their hashes given a sequence of nucleotides. Note the input seq is a
FastaSequence obtained by reading the input file.

The DNA sequences are tens of millions of nucleotides long. So there are also tens of millios
of subsequences. But every time, we are checking one subsequence to see whether it occurs in the
other sequence. So we do not need to build a list of all the subsequences in the memory, and that’s
why it is more memory efficient to implement the function as a generator.

A generator is a function which returns an iterator. It looks like a normal function except
that it contains yield statements for producing a series a values usable in a for-loop or that can
be retrieved one at a time with the next() function. Using a yield expression in a function
definition is sufficient to cause that definition to create a generator function instead of a normal
function.

The execution starts when one of the generators methods is called, e.g. next(). At that
time, the execution proceeds to the first yield expression, where it is suspended again, returning
the value of expression list to generators caller. Each yield temporarily suspends processing,
remembering the location execution state (including local variables and pending try-statements).
When the generator resumes, it picks-up where it left-off (in contrast to functions which start fresh
on every invocation).

Let’s look at a simple example of a generator that yields the first n non-negative integers.
1 def firstn(n):
2 """ A generator that yields items instead of returning a list."""
3 num = 0
4 while num < n:



6.006 Introduction to Algorithms Recitation 9b October 12, 2011

5 yield num
6 num += 1
7
8 print sum(firstn(1000000)) # sum takes an iterable or iterator as an argument.

Note that firstn() is equivalent to the built-in xrange() function, and in Python 3 range()
is a generator. In Python 2.x, range() is non-generator. So sum(range(1000000)) is more
expensive in terms of memory cost because it builds a 1,000,000 element list in memory to find its
sum. This is a waste, considering that we use these 1,000,000 elements just to compute the sum.

Rolling Hash
You can use the RollingHash class provided. Note that it combines append() and skip()
into one slide() method.


