
6.006 Intro to Algorithms Recitation 5 September 23, 2011

Sidebar: Data Structures
A data structure is a collection of algorithms for storing and retrieving information. The oper-
ations that store information are called updates, and the operations that retrieve information are
called queries. For example, a sorted array supports the following operations:

1. Queries: MIN(), MAX(), SEARCH(x)

2. Updates: INSERT(x), DELETE(x)

The salient property of a data structure is its representation invariant (RI), which specifies
how information is stored. Formally, the representation invariant is a predicate which must always
be true for the data structure to function propertly. The query operations offered by the data struc-
ture are guaranteed to produce the correct result, as long as the representation invariant holds (is
true). Update operations are guaranteed to preserve the representation invariant (if the RI holds
before the update, it will also hold after the update).

For example, a sorted array’s representation invariant is that it stores keys in an array, and the
array must always be sorted. SEARCH is implemented using the binary search algorithm, which
takes O(log(N)) time. SEARCH is guaranteed to be correct if the RI holds (the array is sorted). On
the other hand, INSERT must preserve the RI and its running time is O(N). INSERT’s worst-case
input is a key that is smaller than all the keys in the array, as it will require shifting all the elements
in the array to the right.

When implementing (and debugging) a data structure, it is useful to write a check rimethod
that checks whether the representation invariant is met, and raises an exception if that is not the
case. While debugging the data structure, every operation that modifies the data structure would
call check ri right before completing. This helps you find a bug in your implementation as soon
as it happens, as opposed to having to track it down based on incorrect query results. Because it is
only used during debugging, check ri can be slower than the data structure’s main operations.
For example, checking a binary heap’s representation invariant takes O(N) time, whereas the usual
query (MIN) and update operations (INSERT, UPDATE, EXTRACT-MIN) take O(log(N)) time.

When building a software system, you should stop and think for a bit about the data structures
that can perform each task efficiently. Once you have some data structures in mind, you can design
the API (interface) between the module implementing the task and the rest of the system, in a way
that would allow the module to be implemented using any of the efficient data structures. Once the
API is in place, you should initially choose the data structure with the simplest implementation, to
minimize development time. If you need to optimize your system later, you will be able to switch
in a more efficient data structure easily, because you thought of that possibility in advance, when
designing the module’s API.

Binary Search Tree
A binary search tree is a data structure that allows for key lookup, insertion, and deletion. It is a
binary tree, meaning every node x of the tree has at most two child nodes, a left child and a right
child. Each node of the tree holds the following information:



6.006 Intro to Algorithms Recitation 5 September 23, 2011

• x.key - Value stored in node x.

• x.left- Pointer to the left child of node x. NIL if x has no left child.

• x.right - Pointer to the right child of node x. NIL if x has no right child.

• x.parent - Pointer to the parent node of node x. NIL if x has no parent, i.e. x is the root of
the tree.

Binary search tree has the following invariants:

• For each node x, every key found in the left subtree of x is less than or equal to the key found
in x.

• For each node x, every key found in the right subtree of x is greater than or equal to the key
found in x.



6.006 Intro to Algorithms Recitation 5 September 23, 2011

BST Operations
There are operations of a binary search tree that take advantage of the properties above to search
for keys. There are other operations that manipulate the tree to insert new keys or remove old ones
while maintaining these two invariants.

In the lecture, we saw find(k), insert(x), find min() and find max(). They
all have O(h) running time where h is the height of the tree. Today, we will look at two more
operations.

next larger() and next smaller()

Description: Returns the node that contains the next larger (the successor) or next smaller (the
predecessor) key in the binary search tree in relation to the key at node x.

Case 1: x has a right sub-tree where all keys are larger than x.key. The next larger key will be
the minimum key of x’s right sub-tree.

Case 2: x has no right sub-tree. We can find the next larger key by traversing up x’s ancestry
until we reach a node that’s a left child. That node’s parent will contain the next larger key.

1 def next_larger(self):
2 # Case 1:
3 if self.right is not None:
4 return self.right.find_min()
5 # Case 2:
6 current = self
7 while current.parent is not None and current is current.parent.right:
8 current = current.parent
9 return current.parent

Analysis: In the worst case, next larger goes through the longest branch of the tree if x is
the root. Since find min can take O(h) time, next larger could also take O(h) time where
h is the height of the tree.



6.006 Intro to Algorithms Recitation 5 September 23, 2011

delete()

Description: Removes the node x from the binary search tree, making the necessary adjustments
to the binary search tree to maintain its invariants. (Note that this operation removes a specified
node from the tree. If you wanted to delete a key k from the tree, you would have to first call
find(k) to find the node with key k and then call delete to remove that node.)

Case 1: x has no children. Just delete it (i.e. change its parent node so that it doesn’t point to
x).

Case 2: x has one child. Splice out x by linking x’s parent to x’s child.
Case 3: x has two children. Splice out x’s successor and replace x with x’s successor.

1
2 def delete(self):
3 """Deletes and returns this node from the BST."""
4 # Case 1 & 2:
5 if self.left is None or self.right is None:
6 if self is self.parent.left:
7 self.parent.left = self.left or self.right
8 if self.parent.left is not None:
9 self.parent.left.parent = self.parent

10 else:
11 self.parent.right = self.left or self.right
12 if self.parent.right is not None:
13 self.parent.right.parent = self.parent
14 return self
15 # Case 3:
16 else:
17 s = self.next_larger()
18 self.key, s.key = s.key, self.key
19 return s.delete()



6.006 Intro to Algorithms Recitation 5 September 23, 2011

Analysis: In case 3, delete calls next larger, which takes O(h) time. At worst case,
delete takes O(h) time where h is the height of the tree.

Augmented BSTs
The BST data structure can be easily augmented to implement new features without reinventing
the wheel. In the lecutre, we have seen an example of augmenting BST to find the rank of a node.
Here, we will look at another example.

The find min() and find max() operations of a vanilla BST takes O(h) time. This is
not as good as a heap where these operations are constant time. Can we augment BST to do better?

For every node x, we can add a field x.min to keep track of the node with the minimum
key in the subtree rooted at x. So find min() just returns root.min which is constant time.
However, to maintain the invariant of x.min, we need to change insert(x) and delete()
as well.

For insertion, if the key of the node to be inserted is smaller than the current node’s mininum,
we need to update the current node’s minimum. Line 7 and 8 are the only addition and the cost is
constant time. So insertion is still O(h).

1 def insert(self, node):
2 if node is None:
3 return
4 if node.key < self.key:
5 # Updates the min of this node if the inserted node has a smaller
6 # key.
7 if node.key < self.min.key:
8 self.min = node
9 if self.left is None:

10 node.parent = self
11 self.left = node



6.006 Intro to Algorithms Recitation 5 September 23, 2011

12 else:
13 self.left.insert(node)
14 else:
15 if self.right is None:
16 node.parent = self
17 self.right = node
18 else:
19 self.right.insert(node)

For deletion, whenever a node’s left child is changed, this node’s minimum maybe changed
too. This is because the minimum is always in the left subtree, and in the case that there’s no left
subtree, the minimum is the node itself.

Let x be the node to be deleted and x is a left child of its parent, then there are 2 cases:
Case 1: after removing x, x.parent has a new left child, then x.parent.min = x.parent.left.min.
Case 2: after remving x, x.parent has no left child, then x.parent.min = x.parent.
Are we done? No. We need to propogate this min update up to all the parents until we reach a

node that is a right child because in this case its min does not affect its parent. In the worst case,
the propagation takes O(h) time, so deletion is still O(h).

1 def delete(self):
2 if self.left is None or self.right is None:
3 if self is self.parent.left:
4 self.parent.left = self.left or self.right
5 # Case: 1
6 if self.parent.left is not None:
7 self.parent.left.parent = self.parent
8 self.parent.min = self.parent.left.min
9 # Case: 2

10 else:
11 self.parent.min = self.parent
12 # Propagates the changes upwards.
13 current = self.parent
14 while current.parent is not None and current is current.parent.left:
15 current.parent.min = current.min
16 current = current.parent
17 else:
18 self.parent.right = self.left or self.right
19 if self.parent.right is not None:
20 self.parent.right.parent = self.parent
21 return self
22 else:
23 s = self.next_larger()
24 self.key, s.key = s.key, self.key
25 return s.delete()


