
6.006 Intro to Algorithms Recitation 14 March 30, 2011

Shortest Paths
In the past, we were able to use breadth-first search to find the shortest paths between a source
vertex to all other vertices in some graph G. We weighed each edges equally so the shortest path
between two vertices was the one that contained the fewest edges. Now, we introduce edge weights
so the cost of traveling through edges can differ from edge to edge. The shortest path between two
vertices is defined to be the path whose sum of edge weights is the least. BFS will not work on
weighted graphs since the path with the fewest edges may not be the shortest if the edges it contains
are expensive.

There are several variants on the shortest paths problem and the algorithms that we will go over
that correspond to solving each problem are in parentheses:

• Single-source shortest-paths problem: Find a shortest path from a source vertex to each
other vertex in the graph (Bellman-Ford, Dijkstra)

• Single-destination shortest-paths problem: Find a shortest path to a destination vertex
from each other vertex in the graph (Bellman-Ford/Dijkstra on reversed graph)

• Single-pair shortest-path problem: Find a shortest path between a vertex u and a vertex
v in a graph (Bellman-Ford, Dijkstra)

• All-pairs shortest-paths problem: Find a shortest path between every two vertices in a
graph (Bellman-Ford/Dijkstra V times, Floyd-Warshall)

Before getting into Bellman-Ford and Dijkstra, we will go over the principles the algorithms
are built upon.

Notation
Bellman-Ford and Dijkstra both solve the problem of finding a shortest path from a source vertex
to each other vertex in the graph. We will designate the source vertex as s. Every vertex v in the
graph is augmented with the following parameters:

• v.d - The weight of the current shortest path from s to v. This is initialized to be ∞ for
all vertices besides the source vertex but decreases as paths are found and shorter paths are
discovered. At the end of the algorithms, this will be the weight of the shortest path. s.d is
initialized to be 0.

• v.π - The parent vertex of v in the current shortest path. This is initialized to be NIL but gets
set to a vertex once a path is discovered from s to v. As shorter paths to v are discovered,
the parent updates to reflect the change. At the end of the algorithms, this will be the parent
of v in the shortest path to v. s.π will always be NIL.

Also,



6.006 Intro to Algorithms Recitation 14 March 30, 2011

• w(u, v) is the weight of the edge from vertex u to vertex v

• δ(u, v) is the weight of the shortest path from vertex u to vertex v

Relaxation
Initializing the algorithms involves setting v.d to∞ and v.π to NIL. Throughout the course of the
algorithms, we will need to update these values to find shortest paths.

The idea is that if we found a path costing u.d from s to u and there is an edge from u to v,
then the upper bound on the weight of a shortest path from s to v is u.d plus the weight of the edge
between u and v. We can thus compare u.d + w(u, v) to v.d and update v.d if u.d + w(u, v) is
smaller than the current v.d. In pseudocode, relaxing the edge (u, v) is:

RELAX(u, v):
if v.d > u.d + w(u, v) ## if we find a shorter path to v through u

v.d = u.d + w(u, v) ## update current shortest path weight to v
v.pi = u ## update parent of v in current shortest path to v

Both Bellman-Ford and Dijkstra use relaxation to discover shortest paths. The difference be-
tween the two is the order in which edges are relaxed.

Properties of Shortest Paths
Using our definitions of shortest paths and relaxations, we can come up with several properties.
These can all be found in CLRS in chapter 24

Triangle inequality: For any edge (u, v), we have δ(s, v) ≤ δ(s, u) +w(u, v). In english, the
weight of the shortest path from s to v is no greater than the weight of the shortest path from s to
u plus the weight of the edge from u to v.

Optimal substructure: Let {v1, v2, v3, ..., vk} be a shortest path that goes from v1 to vk
through the vertices v2 through vk−1. Any subpath {vi, vi+1, ..., vj−1, vj} must be a shortest path
from vi to vj . That is, a shortest path is constructed of shortest paths between any two vertices in
the path.

Upper-bound property: We always have v.d ≥ δ(s, v) for all vertices v. Once v.d = δ(s, v),
it never changes.

No-path property: If there exists no path from s to v, v.d will always be∞.

Convergence property: If a shortest path from s to v contains the edge (u, v) and u.d =
δ(s, u) before relaxing edge (u, v), then v.d = δ(s, v) at all times after relaxing edge (u, v).



6.006 Intro to Algorithms Recitation 14 March 30, 2011

Path-relaxation property: Let {v1, v2, v3, ..., vk} be a shortest path that goes from v1 to vk.
If the edges are relaxed in the order (v1, v2), (v2, v3), etc., then vk.d = δ(s, vk) once the whole path
is relaxed.

Predecessor-subgraph property: Once v.d = δ(s, v) for all vertices v, the predecessor sub-
graph is a shortest-paths tree rooted at s. The predecessor subgraph is the subgraph of G that
contains all the vertices with a finite distance from s (i.e. reachable from s) and only the edges that
connect v to v.π.


