6.006 Intro to Algorithms Recitation 08 March 2, 2011

Merge Sort

The merge sort algorithm deals with the problem of sorting a list of n elements. It is able to sort
a list of n elements in O(n logn) runtime, which is considerably faster than insertion sort, which
takes O(n?). Merge sort uses a divide and conquer method:

1. If the length of the list is 1, the list is sorted. Return the list

2. Otherwise, split the list in two (roughly) equal halves and then recursively merge sort the
two halves

3. Merge the two sorted halves into one sorted list

The merge operation takes two sorted lists and an iterator at the head of each list. At each step,
we compare the elements at the iterators with each other. We take the smaller element, add it to our
merged list, and then advance the iterator associated with that smaller element. We repeat this step
until every element in the two sorted halves has been added to the merged list, forming a single
large sorted list. The runtime of the merge operation is O(n) where n is the number of elements
we are merging.

Solving Recurrences

We can use merge sort as an example of how to solve recurrences. Recall back to peak finding
where we solved recurrences by showing them in the form of “Runtime of original problem” =
“Runtime of reduced problem” + “Time taken to reduce problem”, and then solved them using the
dot dot dot method. We are going to formalize this a little more.

The form of the recurrences that we’ll be dealing with look like:

T(n) = aT(n/b) + f(n) (1)

Where a is the number of subproblems that the original problem is divided into, n/b is the size
of each subproblem, and f(n) is how long it takes to divide into subproblems and combine the
results of the subproblems.

Example: Binary Search Binary searching a sorted list involves splitting the list in two and
recursively searching into one half of the list. a = 1 since whenever we split the list in two, we
just call a binary search on one half. b = 2 since the new subproblem has half the elements of
the original problem. f(n) = O(1) since finding the middle of a list and deciding which half to
recurse into is a constant time operation.

Example: Merge Sort Merge sorting a list involves splitting the list in two and recursively
merge sorting each half of the list. a = 2 since we call merge sort twice at every recursion (once
on each half). b = 2 since each of the new subproblem has half the elements in the original list.
f(n) = O(n) since combining the results of the subproblems, the merge operation, is O(n).



6.006 Intro to Algorithms Recitation 08 March 2, 2011

Tree Method

One way to solve recurrences is to draw a recursion tree where each node in the tree represents a
subproblem and the value at each node represents the amount of work spent at each subproblem.
The root node represents the original problem. In a recursion tree, every node that is not a leaf has
a children, representing the number of subproblems it is splitting into. To figure out how much
work is being spent at each subproblem, first find the size of the subproblem with the help of b,
then substitute the size of the subproblem in the recurrence formula 7'(n), then take the value of
f(n) as the amount of work spent at that subproblem. Long story short, a node with a problem size
of x, the node will have a children each contributing f(z/b) amount of work.

The work at the leaves is 7'(1), since at that point we have divided the original problem up until
it can no longer be further divided. Note that this means that the work contributed by the leaves
are O(1).

Once we have our tree, the total runtime can be calculated by summing up the work contributed
by all of the nodes. We can do this by summing up the work at each level of the tree, then summing
up the levels of the tree.

Example: Merge Sort Recursion Tree

Il
Il
S 5 .9
E E o

+

+ + e + + = Opzign(n)
g

k k
O(;Zi-%> = O<§n>20(k’-n) < O(n-logn)

The merge sort recursion tree is considered somewhat balanced. The work done at each level
stays consistent (in this case, it is O(n) at each level) so the total work done can be calculated
by multiplying the work at each level by the number of levels, hence O(nlogn) running time
for merge sort. However, there are two other cases that may happen. If the work at each level



6.006 Intro to Algorithms Recitation 08 March 2, 2011

geometrically decreases as we go down the tree, then the work done at the root node (i.e. f(n))
will dominate the runtime. If instead the work at each level geometrically increases as we go down
the tree, then the work done at the bottom level (i.e. number of leaves x f(1) or O(number of
leaves) or O(n'°#:%)) will dominate the runtime.

Master Theorem

Whether or not the work per level stays relatively consistent, geometrically increases, or geometri-
cally decreases can be determined by looking at a, b, and f(n) from the recurrence formula. Using
this information gives us the master theorem, which allows us to solve recurrences of the form

T(n) = a(n/b) + f(n).

1. Case 1: If f(n) = ©(n'°®2~¢), then the amount of work per level geometrically increases
as we go down the tree. The work at the leaf level dominates and T'(n) = ©(n'°s %),

2. Case 2: If f(n) = ©(n'*%*1og" n), then the amount of work per level have about the same
cost (i.e. work per level does not polynomially increase or decrease, though work per level
still may increase or decrease at some slower rate). We have to take the work of all levels
into account and T'(n) = O(n'°%*log* nlogn) = O(n'& * log"™* n).

3. Case 3: If f(n) = O(n'°®2*¢), then the amount of work per level geometrically decreases
as we go down the tree. The work at the root level dominates and 7'(n) = O(f(n)).

Example 1: 7'(n) = 27(n/2) + 1

Example 2: T'(n) = 27 (n/2) +n



6.006 Intro to Algorithms Recitation 08 March 2, 2011

Example 3: 7'(n) = 27'(n/2) + nlogn

Example 4: T'(n) = 47 (n/2) +n?



