
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology March 29, 2011
Professors Erik Demaine, Piotr Indyk, and Manolis Kellis Problem Set 5

Problem Set 5
This problem set is divided into two parts: Part A problems are theory questions, and Part B
problems are programming tasks.

Both Part A and Part B questions are due Monday, April 11th at 11:59PM.
Solutions should be turned in through the course website. Your solution to Part A should be in
PDF format using LATEX. Your solution to Part B should be a valid Python file which runs from
the command line. A template for writing up solutions in LATEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to a correct solution which
is described clearly. Convoluted and obtuse descriptions might receive low marks, even when they
are correct. Also, aim for concise solutions, as it will save you time spent on write-ups, and also
help you conceptualize the key idea of the problem.

Part A
Problem 5-1. [17 points] Arbitrage
Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency
into more than one unit of the same currency. For example, suppose that 1 U.S. dollar buys 0.82
Euro, 1 Euro buys 129.7 Japanese Yen, 1 Japanese Yen buys 12 Turkish Lira, and one Turkish Lira
buys 0.0008 U.S. Dollars. Then, by converting currencies, a trader can start with 1 U.S. dollar and
buy 0.82× 129.7× 12× 0.0008 ≈ 1.02 U.S. dollars, thus turning a profit of 2 percent.

Suppose that we are given n currencies c1, c2, . . . , cn and an n × n table of R exchange rates,
such that one unit of currency ci buys R[i, j] units of currency cj . Give an efficient algorithm to
determine whether there exists a sequence of currencies 〈ci1 , ci2 , . . . , cin〉 such that

R[i1, i2] ·R[i2, i3] · · ·R[ik−1, ik] ·R[ik, i1] > 1

Analyze the running time of your algorithm.

Solution: We can use the Bellman-Ford algorithm on a suitable weighted, directed graph G =
(V,E), which we form as follows. There is one vertex in V for each currency, and for each
pair of currencies ci and cj , there are directed edges (vi, vj) and (vj, vi). (Thus, |V | = n and
|E| = n(n− 1).) To determine edge weights, we start by observing that

R[i1, i2] ·R[i2, i3] · · ·R[ik−1, ik] ·R[ik, i1] > 1

if and only if
1

R[i1, i2]
· 1

R[i2, i3]
· · · 1

R[ik−1, ik]
· 1

R[ik, i1]
< 1.

2 Problem Set 5

Taking logs of both sides of the inequality above, we express this condition as

lg
1

R[i1, i2]
· lg 1

R[i2, i3]
· · · lg 1

R[ik−1, ik]
· lg 1

R[ik, i1]
< 0.

Threfore, if we define the weight of edge (vi, vj) as

w(vi, vj) = lg
1

R[i, j]

= − lgR[i, j],

then we want to find whether there exists a negative-weight cycle in G with these edge weights.

We can determine whether there exists a negative-weight cycle in G by adding an extra vertex
v0 with 0-weight edges (v0, vi) for all vi ∈ V , running BELLMAN-FORD from v0, and using the
boolean result of BELLMAN-FORD (which is TRUE if there are no negative-weight cycles and
FALSE if there is a negative-weight cycle) to guide our answer. That is, we intvert the boolean
result of BELLMAN-FORD.

This method works because adding the new vertex v0 with 0-weight edges from v0 to all other ver-
tices cannot introduce any new cycles, yet it ensures that all negative-weight cycles are reachable
from v0.

It takes Θ(n2) time to createG, which has Θ(n2) edges. Then it takesO(n3) time to run BELLMAN-
FORD. Thus, the total time is O(n3).

Problem 5-2. [17 points] Negative Weight Edges

Let G = (V,E,w) be a weighted directed graph with exactly two negative-weight edges and no
negative-weight cycles. Give an algorithm to find the shortest path weights δ(s, v) from a given
s ∈ V to all other vertices v ∈ V that has the same running time as Dijkstra.

Solution: Let the two-negative weight edges be (v1, t1) and (v2, t2). Then the possible paths from
s to any vertex u are:

1.s ; u,

2.s ; v1 → t1 ; u,

3.s ; v2 → t2 ; u,

4.s ; v1 → t1 ; v2 → t2 ; u, and

5.s ; v2 → t2 ; v1 → t1 ; u.

Remove the negative weight edges and use Dijkstra to determine shortest paths from s, t1, and t2.
Then the shortest paths from s to any vertext u is the minimum over:

d[s, u],

Problem Set 5 3

d[s, v1] + w[v1, t1] + d[t1, u],

d[s, v1] + w[v2, t2] + d[t2, u],

d[s, v1] + w[v1, t1] + d[t1, v2] + w[t2, v2] + d[v2, u], and

d[s, v1] + w[v2, t2] + d[t2, v1] + w[t1, v1] + d[v1, u].

Problem 5-3. [16 points] Integer Weights
Let G = (V,E) be a weighted, directed graph with weight function w : E → {0, 1, . . . ,W} for
some nonnegative integer W . Modify Dijkstra’s algorithm to compute the shortest path weights
from a given source vertex s ∈ V in O(WV + E) time.

Solution: Notice shortest-path is at most (V−1)W , and also an integer. Also notice that EXTRACT-
MIN calls are monotonically increasing over time in Dijkstra’s algorithm. So we can implement
a min-priority queue so that for any sequence of m inserts, extract-min, and decrease-key opera-
tions take O(m + k) time, where keys are known to be integers in the range 0 to k and key values
extracted are monotonically increasing over time. So let k = (V − 1)W , our running time is
O(V + E + VW).

