Introduction to Algorithms: 6.006
Massachusetts Institute of Technology March 10, 2011
Professors Erik Demaine, Piotr Indyk, and Manolis Kellis Problem Set 4

Problem Set 4

This problem set is divided into two parts: Part A problems are theory questions, and Part B
problems are programming tasks.
Both Part A and Part B questions are due Friday, March 18 at 11:59PM.

Solutions should be turned in through the course website. Your solution to Part A should be in
PDF format using IfTEX . Your solution to Part B should be a valid Python file which runs from
the command line. A template for writing up solutions in ISTEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to a correct solution which
is described clearly. Convoluted and obtuse descriptions might receive low marks, even when they
are correct. Also, aim for concise solutions, as it will save you time spent on write-ups, and also
help you conceptualize the key idea of the problem. See the course website for our full grading
policy.

Part A:

Problem 4-1. [32 points] Cycles
This problem deals with finding cycles in a graph.

(a) [8 points] Given a directed graph G = (V, E'), suppose there is a vertex v such that
there exists a path from v to all other vertices in the graph. Consider the following
method to find cycles in the graph. We proceed with BFS starting with vertex v. If we
ever hit a vertex twice, we claim that we have found a cycle. If we hit every vertex
only once, we claim that there doesn’t exist a cycle in the graph. Is this algorithm
correct? If not, point out an error with our algorithm.

(b) [8 points] Now consider running the above algorithm on a connected undirected graph
G = (V, E). Would it work correctly?

(c) [8 points] Given a directed graph G = (V, E), give an algorithm based on DFS that
determines the existence of a cycle in O(|V| + | E|) time.

(d) [8 points] Now, given an undirected graph G = (V, E), propose an algorithm whose
running time is O(|V]) to determine whether the graph contains a cycle. Notice that
the running time should not depend on | E)|.

Problem 4-2. [18 points] Bipartite

You are setting up a friendly match of the hit new multiplayer video game, Call 4 Duty: Counter
Company 2. You have n people who want to play, and you’ve looked up which m pairs of them
are friends. To make the game competitive, you would like to divide the players into two teams,
red and blue, such that every pair of friends end up on opposite teams. (The teams do not need to

2 Problem Set 4

be the same size.) Give an O(n + m)-time algorithm that determines whether such a division into
teams is possible, and if so, finds one suitable labeling of players as red and blue.

Part B:

Problem 4-3. [50 points] Rubik’s Cube

In this problem, you will develop algorithms for solving the 2 x 2 x 2 Rubik’s Cube, known as the
Pocket Cube. Call a configuration of the cube “k levels from the solved position” if it can reach
the solved configuration in exactly & twists, but cannot reach the solved configuration in any fewer
twists.

Download ps4_rubik.zip from the class website. We also provide a GUI representation of
the Rubik’s cube in ps4_rubik_GUI.zip, courtesy of two previous 6.006 students.

(a) (20 points) For this problem, we will use breadth-first search to recreate the column la-
beled f inthe chartseenathttp://en.wikipedia.org/wiki/Pocket_Cube.

Write a function positions_at_level in level.py that takes a nonnegative
integer argument level, and returns the number of configurations that are level
levels from the solved configuration (rubik. I), using both quarter twists and half
twists (twisting the cube by 90° or 180°).

The code in rubik.py only defines the rubik.quarter_twists move set, so
you should start by defining a new move set that includes half twists as well. Do not
modify rubik.quarter_twists because you will need it for the next part of this
problem.

Test your code using test_ level.py, and submit it to the class website. Testcases
above level 8 are commented out, since they may require more memory than many
computers have.

(b) (30 points) Now we will solve the Rubik’s Cube puzzle by finding the shortest path
between two configurations (the start and goal). For this part of the problem, we will
limit the move set to only allow quarter twists (half twists are not allowed).

Your code from part (a) could easily be modified to find shortest paths, but a BFS that
goes as deep as 14 levels will take a few minutes (not to mention the memory needed).
A few minutes might be fine for creating a Wikipedia page, but we want to solve the
cube fast!

Instead, we will take advantage of a property of the graph that we can see in the chart.
In particular, the number of nodes at level 7 (half the diameter) is much smaller than
half the total number of nodes.

With this in mind, we can instead do a two-way BFS, starting from each end at the
same time, and meeting in the middle. At each step, expand one level from the start
position, and one level from the end position, and then check to see whether any of

Problem Set 4

the new nodes have been discovered in both searches. If there is such a node, we can
just read off parent pointers (in the correct order) to return the shortest path.

Write a function shortest_path in solver.py that takes two positions, and
returns a list of moves that is a shortest path between the two positions.

Test your code using test_solver.py. Check that your code runs at close to the
same speed as level 7 from part (a) in the worst case, after modifying it to use just the
quarter twist move set.

Submit your code to the class website. No written part is required for any part of this

problem, but you should make sure your code is adequately documented so that we
can understand it.

