6.006 Homework Problem Set 1, Part A
6.006 TA
Collaborators: none

1 — Asymptotic Growth
March 7, 2011

(a) Group 1: f3> f47 f17 f2
(b) Group 2: fi, fo, fa, f3
(¢) Group 3: f3, fu4, fo, f1

6.006 Homework Problem Set 1, Part A # 2 — Unimodal Maximum
6.006 TA March 7, 2011

Collaborators: none

Note that we can simply solve this problem using the 1D-peak-finding algorithm. Here’s our
pseudocode:

def findMax0fUnimodal(A):
lowerBound = 0O
upperBound = len(A)

while (true):

index = (upperBound - lowerBound) / 2

if (A[lindex - 1] < A[index] and Al[index] < Alindex + 1]):
lowerBound = index

elif (A[index - 1] > Al[index] and Al[index] > A[index + 1]):
upperBound = index

else:
return (index, A[index])

6.006 Homework Problem Set 1, Part A # 3 — Intelligent Copying
6.006 TA March 7, 2011
Collaborators:

1. This doesn’t change either the dot product of D; (the vector for last year’s speech) and
D (the vector for this year’s) nor the sizes of them. Thus this doesn’t help Banach at
all and © = 0.

2. This in fact helps Banach. The dot product doesn’t change although the product of
their lengths does.

3. This also helps Banach a little bit. This time it’s not quite as obvious however. Both
the dot product and product of lengths are reduced. If D, is the vector of last year’s
speech while Dy is the vector of this year’s, we’ll have that Dyo Dy = Dyo Dy = ||Dy||%
Thus:

Dl OD2 _ HD1H
D[el (1D

which is less than 1 and thus © is closer to /2.

6.006 Homework Problem Set 1, Part A # 4 — Augmented Binary Search Trees
6.006 TA March 7, 2011
Collaborators: none

(a)

Save the tree into a sorted list using an inorder-walk. From here, you can iterate through
the sorted list, counting elements once you reach a and returning the count after you
reach b. Another option is to binary search for a and b, getting their indices in the list,
and taking the difference to find the answer. Both methods are bound by the time it
takes to do an inorder-walk through the tree and have a runtime of O(n). Note that we
can do no better than O(n) since we must visit every node within the range a to b and
there may be n nodes in that range.

Another (slower) option is to find a in the tree and call next-larger until you reach a
node with b as the key. Since next-larger takes O(logn) time in an AVL tree and we
could potentially call next-larger O(n) times, the runtime of this option is O(nlogn).

Say each node contains the field size, indicating the size of the subtree rooted at that
node. Consider the operation num-prices-below as described below, which returns the
number of keys found in the entire tree smaller than k:

num-prices-below(k) :

count = 0
n = root
while n != NIL:
if n = k:
return count + n.left.size
elif n < k:
count = count + 1 + n.left.size
n = n.right
else:
n = n.left

return count

Similarly, we can create the operation num-prices-above as described below, which
returns the number of keys found in the entire tree larger than k:

num-prices-above (k) :

count = 0
n = root
while n != NIL:
if n = k:
return count + n.right.size
elif n > k:
count = count + 1 + n.right.size
n = n.left

else:
n = n.right
return count

Using num-prices-below, we can find out how many keys are smaller than a and using
num-prices-above, we can find out how many keys are larger than b. The sum of the
two gives you the number of prices outside of the range a to b. Simply subtract this
from the total size of the tree to get the number of prices within the range a to b.

num-textbooks-in-range(a, b) returns
root.size - num-prices-below(a) - num-prices-above(b).

