The following are a set of reduction problems in approximate order of difficulty.

1. Consider the two problems:

- FACTOR: Given a number $n = pq$, the product of two distinct primes p and q, find p and q.
- EULERTOTIENT: Given a number $n = pq$, where p and q are unknown primes, find $\phi(n)$ $(p-1)(q-1)$, the number of numbers less than *n* relatively prime to *n*.

Reduce FACTOR to EULERTOTIENT.

Solution:

Assume we have a black-box algorithm EULERTOTIENT(n) that returns $\phi(n) = (p-1)(q-1)$. To solve FACTOR(n), we find EULERTOTIENT(n) = $\phi(n) = (p-1)(q-1) = n+1-(p+q)$. We then solve the system of equations:

$$
p + q = n + 1 - \phi(n)
$$

$$
p - q = \sqrt{p^2 - 2pq + q^2} = \sqrt{(p+q)^2 - 4n}
$$

to find p and q .

- 2. Consider the following two problems:
	- FEEDBACKNODESET: Given a directed graph $G = (V, E)$, find a set of vertices $U \subseteq V$ of minimal size such that if U is removed from V , G has no cycles.
	- VERTEXCOVER: Given an undirected graph $G = (V, E)$, find a minimum set of vertices $U \subseteq V$ such that for all $(u, v) \in E$, either $u \in U$ or $v \in U$ or both.

Reduce VERTEXCOVER to FEEDBACKNODESET.

Solution:Given an undirected graph $G = (V, E)$ and an algorithm for solving FEEDBACKNODE-SET, create a graph $G' = (V', E')$ with $V' = V$. For each undirected edge $(u, v) \in E$, create directed edges (u', v') and (v', u') in E. Return the unprimed versions of the vertices returned by $\text{FeeDBACKNODESET}(G').$

- 3. Consider the following problem:
	- SETCOVER: Given a set of sets $S = \{\{a_{11}, a_{12}, ..., a_{1n_1}\}, \{a_{21}, ..., a_{2n_2}\}, ..., \{a_{m1}, ..., a_{mn_m}\}\}\$ where the a_{ij} 's may not necessarily be distinct, find the minimum number of sets, $A_1, ..., A_k$, necessary such that every element in any set in S is in at least one of the A_i .

Reduce VERTEXCOVER to SETCOVER.

Solution:

Assume we have a black-box algorithm SETCOVER that solves the SETCOVER problem. Given a graph $G = (V, E)$, for each vertex $v_i \in V$, create a set $F_i \subseteq E$ of edges that have v_i as an endpoint. Run SETCOVER on the F_i to get the covering $F_{i_1},...,F_{i_m}$. Return the corresponding vertices $v_{i_1},...,v_{i_m}$.

- 4. Consider the following two problems:
	- PARTITION: Given a set n of non-negative integers $\{a_1, ..., a_n\}$, decide if there is there a subset $P \subseteq [1, n]$ such that $\sum_{i \in P} a_i = \sum_{i \notin P} a_i$.
	- KNAPSACK: Given a set $S = \{a_1, ..., a_n\}$ of non-negative integers, and an integer K, decide if there is there a subset $P \subseteq S$ such that $\sum_{a_i \in P} = K$.

Reduce KNAPSACK to PARTITION.

Solution: Assume we have a black-box algorithm PARTITION that can solve the PARTITION problem. Given an instance of KNAPSACK, with integers $S = a_1, ..., a_n$, let $H = \frac{1}{2} \sum_{i=1}^n a_i$. Add integers $a_{n+1} = 2H + 2K$ and $a_{n+2} = 4H$ to the set and return PARTITION $(a_1, ..., a_{n+2})$. The reduction is clearly polynomial. To show it works, we must show there exists $P \subseteq [1, n+2]$ with $\sum_{i\in P} a_i = \sum_{i\notin P} a_i$ if and only if there is some $Q \subseteq S$ such that $\sum_{a_i\in Q} = K$. We first show that if there exists P, there exists Q. Firstly note that if $a_{n+1} \in P$, $a_{n+2} \notin P$ since

their sum is greater than the sum of the remaining integers. WLOG assume $a_{n+2} \in P$. Then

$$
4H + \sum_{a_i \in P \setminus a_{n+2}} a_i = 2H + 2K + \sum_{a_i \in S \setminus P}
$$

\n
$$
\Rightarrow 4H + 2 \sum_{a_i \in P \setminus a_{n+2}} a_i = 4H + 2K
$$

\n
$$
\Rightarrow \sum_{a_i \in P \setminus a_{n+2}} = K
$$

Now assume there exists Q. Then

$$
\sum_{a_i \in Q} a_i + 4H = 4H + K = 2H + K + \sum_{a_i} a_i = 2H + 2K \sum_{a_i \notin Q} a_i
$$

so there also exists $P = Q \cup 4H$.

- 5. Consider the two problems:
	- CNFSATISFIABILITY: Given a set of boolean variables (i.e. variables that can only be TRUE or FALSE), $\{v_1, ..., v_n\}$ and the boolean operators \wedge (AND), \vee (OR), \neg (NOT), a boolean expression written in conjunctive normal form (CNF) has the form $(x_{11} \vee x_{12} \vee ... x_{1m_1}) \wedge$ $(x_{21} \vee ... \vee x_{2m_2}) \wedge ... \wedge (x_{k1} \vee ... \vee x_{km_k})$ where each x_{ij} is either a boolean variable or the negation of a boolean variable. Given a boolean expression written in CNF, determine if there is some assignment of TRUE/FALSE to each of the boolean variables $v_1, ..., v_n$ such that the expression evaluates to TRUE. Assume that $m_i \geq 3$ for all i.
	- 3-SAT: A boolean expression written in 3-CNF form has the form $(x_{11} \vee x_{12} \vee x_{13}) \wedge ... \wedge$ $(x_{k1} \vee x_{k2} \vee x_{k3})$ where each clause has exactly 3 literals. Given a boolean expression written in 3-CNF form, determine if there is some assignment to each of the boolean variables such that the expression evaluates to TRUE.

Reduce CNFSATISFIABILITY to 3-SAT.

Solution:

Assume we have a black-box algorithm for 3-SAT. We show we can use this algorithm to solve an instance of CNFSATISFIABILITY. Consider an instance of CNFSATISFIABILITY $f = (x_{1,1} \vee ... \vee x_{n,1})$ $x_{1,m_1} \wedge ... \wedge (x_{n,1} \vee ... \vee x_{n,m_n})$. Let there be $L = \sum_{i=1}^n m_i$ literals. We introduce $L-3n$ dummy variables $\lambda_{1,1},...,\lambda_{1,m_1-3},...,\lambda_{n,m_n-3}$ and create 3-SAT instance f' by rewriting each clause c_i as:

$$
\begin{array}{ll}c'_i&=&\left(x_{i,1}\vee x_{i,2}\vee\neg\lambda_{i,1}\right)\wedge\left(\lambda_{i,1}\vee x_{i,3}\vee\neg\lambda_{i,2}\right)\wedge\left(\lambda_{i,2}\vee x_{i,4}\vee\neg\lambda_{i,3}\right)\wedge\ldots\\ &\wedge\left(\lambda_{i,m_i-4}\vee x_{i,m_i-2}\vee\neg\lambda_{i,m_i-3}\right)\wedge\left(\lambda_{i,m_i-3}\vee x_{i,m_i-1}\vee x_{i,m_i}\right)\end{array}
$$

We return $3\text{-SAT}(f')$.

The reduction is polynomial since L is polynomial in the number of literals in the CNFSATISFIA-BILITY instance. To show it works, we show that f' has a satisfying solution if and only if f has a satisfying solution.

Firstly, assume f has a satisfying solution, $X_{1,1},...,X_{1,m_1},...,X_{n,m_n}$ where $X_{i,j}$ is the value of literal $x_{i,j}$. For example, if $x_{i,j} = -v_k$ and v_k has value TRUE in the satisfying assignment then $X_{i,j}$ =FALSE. Now consider applying that clause to c_i' . At least one of the $X_{i,j}$ must be TRUE or the solution would not be satisfying. Let $X_{i,k}$ be this TRUE literal. We can satisfy c_i' by setting $\lambda_{j\leq k-2}$ = FALSE and $\lambda_{j>k-2}$ = TRUE.

Now assume f' has a satisfying solution, $X_{1,1},...,X_{1,m_1},...,X_{n,m_n},\Lambda_{1,1},...,\Lambda_{n,m_n-3}$. Consider clause c_i in f. We show that $X_{i,1},...,X_{i,m_i}$ satisfies c_i . Clearly if $\Lambda_{i,1} = \text{TRUE or } \Lambda_{i,m_i-3} =$ FALSE, c_i must be satisfied since one of $X_{i,1}$, $X_{i,2}$, X_{i,m_i-1} , or X_{i,m_i} is TRUE. Therefore, assume both $\Lambda_{i,1} = \text{FALSE and } \Lambda_{i,m_i-3} = \text{TRUE.}$ Then by construction there must be some $(\lambda_{i,j-2} \vee$ $x_{i,j} \vee \neg \lambda_{i,j-1}$ in c'_i such that $\Lambda_{i,j-2} = \text{FALSE}$ and $\Lambda_{i,j-1} = \text{TRUE}$. Since c'_i is satisfied, we must have $X_{i,j}$ = TRUE and c_i will also be satisfied.