
The following are a set of reduction problems in approximate order of difficulty.

1. Consider the two problems:

• Factor: Given a number n = pq, the product of two distinct primes p and q, find p and q.

• EulerTotient: Given a number n = pq, where p and q are unknown primes, find φ(n) =
(p− 1)(q − 1), the number of numbers less than n relatively prime to n.

Reduce Factor to EulerTotient.

Solution:

Assume we have a black-box algorithm EulerTotient(n) that returns φ(n) = (p− 1)(q− 1). To
solve Factor(n), we find EulerTotient(n) = φ(n) = (p− 1)(q − 1) = n+ 1− (p+ q). We then
solve the system of equations:

p+ q = n+ 1− φ(n)

p− q =
√
p2 − 2pq + q2 =

√
(p+ q)2 − 4n

to find p and q.

2. Consider the following two problems:

• FeedbackNodeSet: Given a directed graph G = (V,E), find a set of vertices U ⊆ V of
minimal size such that if U is removed from V , G has no cycles.

• VertexCover: Given an undirected graph G = (V,E), find a minimum set of vertices
U ⊆ V such that for all (u, v) ∈ E, either u ∈ U or v ∈ U or both.

Reduce VertexCover to FeedbackNodeSet.

Solution:Given an undirected graph G = (V,E) and an algorithm for solving FeedbackNode-
Set, create a graph G′ = (V ′, E′) with V ′ = V . For each undirected edge (u, v) ∈ E, create
directed edges (u′, v′) and (v′, u′) in E. Return the unprimed versions of the vertices returned by
FeedbackNodeSet(G′).

3. Consider the following problem:

• SetCover: Given a set of sets S = {{a11, a12, ..., a1n1}, {a21, ..., a2n2}, ..., {am1, ..., amnm}}
where the aij ’s may not necessarily be distinct, find the minimum number of sets, A1, ..., Ak,
necessary such that every element in any set in S is in at least one of the Ai.

Reduce VertexCover to SetCover.

Solution:

Assume we have a black-box algorithm SetCover that solves the SetCover problem. Given
a graph G = (V,E), for each vertex vi ∈ V , create a set Fi ⊆ E of edges that have vi as an
endpoint. Run SetCover on the Fi to get the covering Fi1 , ..., Fim . Return the corresponding
vertices vi1 , ..., vim .

4. Consider the following two problems:

• Partition: Given a set n of non-negative integers {a1, ..., an}, decide if there is there a subset
P ⊆ [1, n] such that

∑
i∈P ai =

∑
i 6∈P ai.

• Knapsack: Given a set S = {a1, ..., an} of non-negative integers, and an integer K, decide
if there is there a subset P ⊆ S such that

∑
ai∈P = K.

1



Reduce Knapsack to Partition.

Solution:Assume we have a black-box algorithm Partition that can solve the Partition prob-
lem. Given an instance of Knapsack, with integers S = a1, ..., an, let H = 1

2

∑n
i=1 ai. Add

integers an+1 = 2H + 2K and an+2 = 4H to the set and return Partition(a1, ..., an+2). The
reduction is clearly polynomial. To show it works, we must show there exists P ⊆ [1, n + 2] with∑

i∈P ai =
∑

i 6∈P ai if and only if there is some Q ⊆ S such that
∑

ai∈Q = K.

We first show that if there exists P , there exists Q. Firstly note that if an+1 ∈ P , an+2 6∈ P since
their sum is greater than the sum of the remaining integers. WLOG assume an+2 ∈ P . Then

4H +
∑

ai∈P\an+2

ai = 2H + 2K +
∑

ai∈S\P

⇒ 4H + 2
∑

ai∈P\an+2

ai = 4H + 2K

⇒
∑

ai∈P\an+2

= K

Now assume there exists Q. Then∑
ai∈Q

ai + 4H = 4H +K = 2H +K +
∑
ai

ai = 2H + 2K
∑
ai 6∈Q

ai

so there also exists P = Q ∪ 4H.

5. Consider the two problems:

• CNFSatisfiability: Given a set of boolean variables (i.e. variables that can only be TRUE
or FALSE), {v1, ..., vn} and the boolean operators ∧ (AND), ∨ (OR), ¬ (NOT), a boolean
expression written in conjunctive normal form (CNF) has the form (x11 ∨ x12 ∨ ...x1m1

) ∧
(x21 ∨ ... ∨ x2m2

) ∧ ... ∧ (xk1 ∨ ... ∨ xkmk
) where each xij is either a boolean variable or the

negation of a boolean variable. Given a boolean expression written in CNF, determine if there
is some assignment of TRUE/FALSE to each of the boolean variables v1, ..., vn such that the
expression evaluates to TRUE. Assume that mi ≥ 3 for all i.

• 3-SAT: A boolean expression written in 3-CNF form has the form (x11 ∨ x12 ∨ x13) ∧ ... ∧
(xk1 ∨xk2 ∨xk3) where each clause has exactly 3 literals. Given a boolean expression written
in 3-CNF form, determine if there is some assignment to each of the boolean variables such
that the expression evaluates to TRUE.

Reduce CNFSatisfiability to 3-SAT.

Solution:

Assume we have a black-box algorithm for 3-SAT. We show we can use this algorithm to solve an
instance of CNFSatisfiability. Consider an instance of CNFSatisfiability f = (x1,1 ∨ ... ∨
x1,m1

)∧ ...∧ (xn,1 ∨ ...∨ xn,mn
). Let there be L =

∑n
i=1mn literals. We introduce L− 3n dummy

variables λ1,1, ..., λ1,m1−3, ..., λn,mn−3 and create 3-SAT instance f ′ by rewriting each clause ci as:

c′i = (xi,1 ∨ xi,2 ∨ ¬λi,1) ∧ (λi,1 ∨ xi,3 ∨ ¬λi,2) ∧ (λi,2 ∨ xi,4 ∨ ¬λi,3) ∧ ...
∧(λi,mi−4 ∨ xi,mi−2 ∨ ¬λi,mi−3) ∧ (λi,mi−3 ∨ xi,mi−1 ∨ xi,mi)

We return 3-SAT(f ′).

The reduction is polynomial since L is polynomial in the number of literals in the CNFSatisfia-
bility instance. To show it works, we show that f ′ has a satisfying solution if and only if f has a
satisfying solution.

2



Firstly, assume f has a satisfying solution, X1,1, ..., X1,m1
, ..., Xn,mn

where Xi,j is the value of
literal xi,j . For example, if xi,j = ¬vk and vk has value TRUE in the satisfying assignment then
Xi,j =FALSE. Now consider applying that clause to c′i. At least one of the Xi,j must be TRUE or
the solution would not be satisfying. Let Xi,k be this TRUE literal. We can satisfy c′i by setting
λj≤k−2 = FALSE and λj>k−2 = TRUE.

Now assume f ′ has a satisfying solution, X1,1, ..., X1,m1
, ..., Xn,mn

,Λ1,1, ...,Λn,mn−3. Consider
clause ci in f . We show that Xi,1, ..., Xi,mi satisfies ci. Clearly if Λi,1 = TRUE or Λi,mi−3 =
FALSE, ci must be satisfied since one of Xi,1, Xi,2, Xi,mi−1, or Xi,mi is TRUE. Therefore, assume
both Λi,1 = FALSE and Λi,mi−3 = TRUE. Then by construction there must be some (λi,j−2 ∨
xi,j ∨ ¬λi,j−1) in c′i such that Λi,j−2 = FALSE and Λi,j−1 = TRUE. Since c′i is satisfied, we must
have Xi,j = TRUE and ci will also be satisfied.

3


