
Contents

1 Longest Common Subsequence 1

1.1 Problem Definition . 1

1.2 Top-Down Dynamic Programming . 1

1.3 Bottom Up Dynamic Programming . 2

2 Bottom Up Dynamic Programming 2

2.1 Ordering Subproblems . 2

2.2 Knapsack Problem . 2

2.3 Bottom Up Dynamic Programming to the... Oh, FAIL . 3

3 Example Problems 4

3.1 Making Change . 4

3.2 Box Stacking . 4

1 Longest Common Subsequence

1.1 Problem Definition

Given a sequence s = 〈s1, s2, ..., sn〉 a subsequence is any sequence 〈si1 , si2 , ..., sim
〉 with ij strictly

increasing.

Applications: document compare, DNA analysis.

NOTE: This is to find one longest subsequence, not all! So mostly we focus on finding the size.

1.2 Top-Down Dynamic Programming

Optimal substructure! Assume x = 〈x1, ..., xm〉 and y = 〈y1, ..., yn〉. Let z = 〈z!, ..., zk〉 be an LCS of x
and y. Then

• If xm = yn, then we must have zk = xm = yn and 〈z1, ..., zk−1〉 is an LCS of 〈x1, ..., xm−1〉 and
〈y1, ..., yn−1〉.

• If xm 6= yn then z uses at most one of them. Specifically:

– If zk 6= xm then z is an LCS of 〈x1, ..., xm−1〉 and y

– If zk 6= yn then z is an LCS of x and 〈y1, ..., yn−1〉

1

Now we can define a recursion relation that tells us the length of the LCS! Let c(i, j) be the length of
the LCS of 〈x1, ..., xi〉 and 〈y1, ..., yj〉. We want c(n, m).

c(i, j) =

 0 if i = 0 or j = 0
c(i− 1, j − 1) + 1 if i, j > 0 and xi = yj

max(c(i− 1, j), c(i, j − 1)) if i, j > 0 and xi 6= yj

(1)

So now we can do it recurisively! We’ll analyze the running time when we talk about it bottom up.

1.3 Bottom Up Dynamic Programming

Recursion is easy to write, but hard to think about... bottom up is much more natural to think about.

So let’s think about it another way... If the problem is really small we can do it quickly! What does
really small mean? If both sequences are size 1.

But if we know the answer where both subsequences are size 1, then we can in constant time figure out
most of the cases where both subsequences are size 2... Specifically we draw a diagram that looks like
the one from lecture. Go look at it. It is an nXm box and we can see that at box (r, c), if we know all
squares (rs, cs) with rs < r or cs < c then we can fill in (r, c) in constant time.

Running Time: Now this is easy! We have to fill up the matrix. Filling in each square, given all
squares below is constant time. There are O(nm) squares. This was exactly how we analyzed the
recursive running time - this diagram is just our “memo” - but it’s much easier to see.

2 Bottom Up Dynamic Programming

2.1 Ordering Subproblems

We want to order subproblems such that we never have to “backtrack” and solve a smaller problem in
order to solve a larger problem. This sounds like.... Topological Sort!

If problem u depends on v draw a directed edge from v to u. If this graph isn’t acyclic then we can’t use
DP. If it is, we topologically sort it. Note that we can’t sort longest simple path, for example, because
the subproblems are inter-dependent.

2.2 Knapsack Problem

Given a set O of objects, each object has size and value. Want to maximize the value in a knapsack
of finite size. NP-Hard in general. Solvable by DP when sizes and values are upper bounded integers...
sort of.

Stupid Algorithm: O(2|O|)

Greedy Algorithms: Greedy on values or greedy on value/size. Doesn’t give the optimal solution.
Pretty clear if just greedy on values. For greedy on value/size, consider the following instance:

2

Knapsack size 50, Item 1 size 10 value 60, Item 2 size 20 value 100, Item 3 size 30 value 120.

Item 1 has the highest value/size, but the correct solution is actually items 2 and 3.

Recurrence: So given the best value we can obtain for items ik+1, ..., in, what is the best value for
items ik, ..., in? That doesn’t quite work. Think about the dependency graph. The “best value” for
ik+1, ..., in that can be used with ik depends on the size of ik, but ik depends on ik+1, ..., in. So that’s
not going to work.

To decouple the problems, we need another dimension! Namely, the space. So we use V (k, X) the
maximum value for items ik, ..., in given X space. We want V (0, S) where S is the size of the knapsack.
So in order for this to work X must have a finite number of values! Then

V (k, X) =

 0 if i = 0orX = 0orX > S
V (k + 1, X) if Size(ik) > X
max(V (k + 1, X),Value(ik) + V (k + 1, X − Size(ik)))

(2)

Running Time: Size of memo is nS. Filling in each square takes constant time so O(nS). Sadly...
this isn’t polynomial in the size of the input! S takes only O(log S) bits to specify.

2.3 Bottom Up Dynamic Programming to the... Oh, FAIL

For any problem, we can always create a memo where we can fill in each square in polynomial time! The
problem is that the size of the memo may not be polynomial.

Longest Simple Paths Again: Consider the function d(s, t,W) that stores the longest path from s
to t using only vertices in W . We can use DP (I think) to calculate this but there are an exponential
number of them.

3 Example Problems

3.1 Making Change

Problem: You are given n types of coins with values v1, ..., vn and a cost C. You may assume v1 = 1
so that it is always possible to make any cost. What is the smallest number of coins required to sum to
C exactly?

For example, assume you coins of values 1, 5, and 10. Then the smallest number of coins to make 26 is
4: 2 coins of value 10, 1 coin of value 5, and 1 coin of value 1.

Give a recurrence relation, show how you solve this recurrence bottom-up, and analyze the runtime.
(Note the runtime should be polynomial in the value of C but may not be polynomial in log C.)

Solution: Recursion: We recurse on M(j), the minimum number of coins required to make change for
cost j.

M(j) =
{

0 if j = 0
minvi∈n(M(j − vi)) + 1 else (3)

3

Running Time: M has C elements and computing each element takes O(n) time so the total running
time is O(nC).

3.2 Box Stacking

Problem: You are given a set of boxes {b1, ..., bn}. Each box bj has an associated width wj , height
hj and depth dj . You wish to create the highest possible stack of boxes with the constraint that if box
bi is stacked on box bj , the 2D base of bi is larger in both dimensions than the base of bj . You can of
course, rotate the boxes to decide which face is the base, but you can use each box only once.

For example, given two boxes with h1 = 5, w1 = 6, d1 = 1 and h2 = 4, w2 = 4, h2 = 2, you should orient
box 1 so that it has a base of 5x5 and a height of 1 and stack box 2 on top of it oriented so that it has
a height of 4 for a total stack height of 5.

Give a recurrence relation, show how you solve this recurrence bottom-up, and analyze the runtime. (The
runtime should be polynomial in n.)

Solution: Recursion: Memoize over H(j, R), the tallest stack of boxes with j on top with rotation R.

H(j, R) =
{

0 if j = 0
max

i<j with wi>wj ,di>dj
(H(i, R) + hj) if j > 0 (4)

Running Time: The size of H is O(n|R|) where R is the number of possible rotations for a box. For
our purposes, |R| = 3 (since we only care about which dimension we designate as the “height”) so
|H| = O(n). Filling in each element of H is also O(n) for a total running time of O(n2).

4

