
Heap Algorithms

Parent(A, i)

// Input: A: an array representing a heap, i: an array index
// Output: The index in A of the parent of i
// Running Time: O(1)

1 if i == 1 return NULL
2 return bi/2c

Left(A, i)

// Input: A: an array representing a heap, i: an array index
// Output: The index in A of the left child of i
// Running Time: O(1)

1 if 2 ∗ i ≤ heap-size[A]
2 return 2 ∗ i
3 else return NULL

Right(A, i)

// Input: A: an array representing a heap, i: an array index
// Output: The index in A of the right child of i
// Running Time: O(1)

1 if 2 ∗ i + 1 ≤ heap-size[A]
2 return 2 ∗ i + 1
3 else return NULL

Max-Heapify(A, i)

// Input: A: an array where the left and right children of i root heaps (but i may not), i: an array index
// Output: A modified so that i roots a heap
// Running Time: O(log n) where n = heap-size[A]− i

1 l← Left(i)
2 r ← Right(i)
3 if l ≤ heap-size[A] and A[l] > A[i]
4 largest← l
5 else largest← i
6 if r ≤ heap-size[A] and A[r] < A[largest]
7 largest← r
8 if largest 6= i
9 exchange A[i] and A[largest]

10 Max-Heapify(A, largest)

Build-Max-Heap(A)

// Input: A: an (unsorted) array
// Output: A modified to represent a heap.
// Running Time: O(n) where n = length[A]

1 heap-size[A]← length[A]
2 for i← blength[A]/2c downto 1
3 Max-Heapify(A, i)

1

Heap-Increase-Key(A, i, key)

// Input: A: an array representing a heap, i: an array index, key: a new key greater than A[i]
// Output: A still representing a heap where the key of A[i] was increased to key
// Running Time: O(log n) where n =heap-size[A]

1 if key < A[i]
2 error(“New key must be larger than current key”)
3 A[i]← key
4 while i > 1 and A[Parent(i)] < A[i]
5 exchange A[i] and A[Parent(i)]
6 i← Parent(i)

Heap-Sort(A)

// Input: A: an (unsorted) array
// Output: A modified to be sorted from smallest to largest
// Running Time: O(n log n) where n = length[A]

1 Build-Max-Heap(A)
2 for i = length[A] downto 2
3 exchange A[1] and A[i]
4 heap-size[A]← heap-size[A]− 1
5 Max-Heapify(A, 1)

Heap-Extract-Max(A)

// Input: A: an array representing a heap
// Output: The maximum element of A and A as a heap with this element removed
// Running Time: O(log n) where n =heap-size[A]

1 max← A[1]
2 A[1]← A[heap-size[A]]
3 heap-size[A]←heap-size[A]− 1
4 Max-Heapify(A, 1)
5 return max

Max-Heap-Insert(A, key)

// Input: A: an array representing a heap, key: a key to insert
// Output: A modified to include key
// Running Time: O(log n) where n =heap-size[A]

1 heap-size[A]←heap-size[A] + 1
2 A[heap-size[A]]← −∞
3 Heap-Increase-Key(A[heap-size[A]], key)

2

1 Overview

• Overview of Heaps

• Heap Algorithms (Group Exercise)

• More Heap Algorithms!

• Master Theorem Review

2 Heap Overview

Things we can do with heaps are:

• insert

• max

• extract max

• increase key

• build them

• sort with them

(Max-)Heap Property For any node, the keys of its children are less than or equal to its key.

3 Heap Algorithms (Group Exercise)

We split into three groups and took 5 or 10 minutes to talk. Then each group had to work their example
algorithm on the board.

3

Group 1: Max-Heapify and Build-Max-Heap

Given the array in Figure 1, demonstrate how Build-Max-Heap turns it into a heap. As you do so,
make sure you explain:

• How you visualize the array as a tree (look at the Parent and Child routines).

• The Max-Heapify procedure and why it is O(log(n)) time.

• That early calls to Max-Heapify take less time than later calls.

The correct heap is also shown in Figure 1.

5 4 9 7 19 8 17 2 6 5 21

5 4

97

19

8

17

2 6

5

21Build-Max-Heap

Figure 1: The array to sort and the heap you should find.

4

Group 2: Heap-Increase-Key

For the heap shown in Figure 2 (which Group 1 will build), show what happens when you use Heap-
Increase-Key to increase key 2 to 22. Make sure you argue why what you’re doing is O(log n). (Hint:
Argue about how much work you do at each level)

5 4

97

19

8

17

2 6

5

21

Increase this key to 22

Figure 2: The heap on which to increase a key. You should increase the key of the bottom left node (2)
to be 22.

5

Group 3: Heap-Sort

Given the heap shown in Figure 3 (which Groups 1 and 2 will build for you), show how you use it to
sort. You do not need to explain the Max-Heapify or the Build-Max-Heap routine, but you should
make sure you explain why the runtime of this algorithm is O(n log n). Remember the running time of
Max-Heapify is O(log n).

5 4

919

21

8

17

7 6

5

22

Figure 3: Sort this heap.

6

4 More Heap Algorithms

Note Heap-Extract-Max and Max-Heap-Insert procedures since we didn’t discuss them in class:

Heap-Extract-Max(A)

1 max← A[1]
2 A[1]← A[heap-size[A]]
3 heap-size[A]←heap-size[A]− 1
4 Max-Heapify(A, 1)
5 return max

Max-Heap-Insert(A, key)

1 heap-size[A]←heap-size[A] + 1
2 A[heap-size[A]]← −∞
3 Heap-Increase-Key(A[heap-size[A]], key)

5 Running Time of Build-Max-Heap

Trivial Analysis: Each call to Max-Heapify requires log(n) time, we make n such calls⇒ O(n log n).

Tighter Bound: Each call to Max-Heapify requires time O(h) where h is the height of node i.
Therefore running time is

logn∑
h=0

n

2h + 1︸ ︷︷ ︸
Number of nodes at height h

× O(h)︸ ︷︷ ︸
Running time for each node

= O

(
n

logn∑
h=0

h

2h

)

= O

(
n

∞∑
h=0

h

2h

)
= O(n) (1)

Note
∑∞

h=0 h/2h = 2.

6 Proving Build-Max-Heap Using Loop Invariants

(We didn’t get to this in this week’s recitation, maybe next time).

Loop Invariant: Each time through the for loop, each node greater than i is the root of a max-heap.

Initialization: At the first iteration, each node larger than i is at the root of a heap of size 1, which
is trivially a heap.

7

Maintainance: Since the children of i are larger than i, by our loop invariant, the children of i are
roots of max-heaps. Therefore, the requirement for Max-Heapify is satisfied and, at the end of the
loop, index i also roots a heap. Since we decrement i by 1 each time, the invariant holds.

Termination: At termination, i = 0 so i = 1 is the root of a max-heap and therefore we have created
a max-heap.

Discussion: What is the loop invariant for Heap-Sort? (All keys greater than i are sorted).

Initialization: Trivial.

Maintainance: We always remove the largest value from the heap. We can call Max-Heapify because
we have shrunk the size of the heap so that the root’s children are root’s of good heaps (although the
root is not the root of a good heap).

Termination: i = 0

7 Master Theorem Review: More Examples

Traverse-Tree(T)

1 if left-child(root[T]) == NULL and right-child(root[T]) == NULL return
2 output left-child(root[T]), right-child(root[T])
3 Traverse-Tree(right-child(root[T]))
4 Traverse-Tree(left-child(root[T]))

Recurrence is T = 2T (n/2) + O(1). a = 2, b = 2, nlogb(a) = n, f(n) = 1. Master Theorem Case 1,
Running Time O(1).

Multiply(x, y)

1 n← max(|x|, |y|) // |x| is size of x in bits
2 if n = 1 return xy
3 xL ← x[1 : n/2], xR ← x[n/2 + 1 : n], yL ← y[1 : n/2], yR ← y[n/2 + 1 : n]
4 P1 = Multiply(xL, yL)
5 P2 = Multiply(xR, yR)
6 P3 = Multiply(xL + xR, yL + yR)
7 return 2nP1 + 2n/2(P3 − P1 − P2) + P2

Recurrence Relation: T (n) = 3T (n/2) + O(n) (Note: Addition takes linear time in number of bits).
a = 3, b = 2, nlogb(a) = nlog3(2), f(n) = O(n), Case 1 of Master Theorem, O(nlog3(2))

8

MatrixMultiply(X,Y)

1 n← sizeof(X) // Assume X and Y are the same size and square
2 if n = 1, return XY
3 // Split X and Y into four quadrants:

A← UpperLeft(X), B ← UpperRight(X), C ← LowerLeft(X), D ← LowerRight(X)
E ← UpperLeft(Y), F ← UpperRight(Y), G← LowerLeft(Y), H ← LowerRight(Y)

4 UL←MatrixMultiply(A,E) + MatrixMultiply(B,G)
5 UR←MatrixMultiply(A,F) + MatrixMultiply(B,H)
6 LL←MatrixMultiply(C,E) + MatrixMultiply(D,G)
7 LR←MatrixMultiply(C,F) + MatrixMultiply(D,H)
8 return matrix with UL as upper left quadrant, UR as upper right, LL as lower left, LR as lower right.

Recurrence Relation: T (n) = 8T (n/2) + O(n2). a = 8, b = 2, nlogb(a) = n3, f(n) = n2. Case 1 of the
Master Theorem, O(n3).

9

