1 Overview

Rolling Hash

Sorting

Master Theorem

Universal Hashing

2 Rolling Hash

Idea: Hash functions can be related!

Example: Hashing strings “the” and “her”

Converting to numbers:

“the” = (t-(26)%+ h - (26) +e)

“her” = (h-(26)? + - (26) +r) = 26(“the”—t) +r

In general: Converting to base-b numbers using:

N(S) = SobE + 1oLt + Sobl=2 + .+ Sy _1b+ 5L,
Given S and S’ = Sp.p, and S = Sp.p4M4n

N(S") =M+ (N(S') = b5 "N (Sh.)) + N (ST i1:tgmsnr)
Mod properties:

ab mod m = ((a mod m)(b mod m)) mod m

(a +b) mod m = ((a mod m) + (b mod m)) mod m
hm(S) = N(S) mod m = ((((Sop mod m) (b mod m)) mod m)+...+Sz mod m) mod m

hm(S") = N(S") mod m
= (bM+7L(hm(Sl) - bL_nhm(S(l)n)) + hm(S/[/,+1;L+M)) mOd m

Just store division hash!
One character move:
(b(hm(Sl) - bL_lhm(S(I))) + hm(SZJrl)) mod m

Constant time hash calculation!

3 Sorting

Idea: Given list of numbers, sort them from smallest to largest.

MERGE SORT

1. One element, done

2. Merge-Sort(A[l : n/2])

w

. Merge-Sort(A[n/2+1: n])

S

. Merge two arrays

Two-Finger Algorithm

Idea: One finger in each list. Advance finger on smaller element.
Example:

12

53

19 18

21 25

123518192125

Time: O(n) since you only touch each element once

Space: If you create a new array each time nlogn but can be done in place
(complicated)

Best Case: O(n) if already sorted (yay good!)

4 Master Theorem

IDEA: Used to solve running time for recurrence relations. Like Merge Sort.
T(n) =2T(n/2)+ O(n)

General form: T = aT'(n/b) + f(n)

Think of recurrence as tree:

Height: log,(n)

Number of leaves: a'°%»(™)

LOG PROPERTY:

alOgb (n) — nlOgb (a)

log, (n) = log, (a'%«(") = log, (n) log, (a)

logy(x¥) = ylogy(x) because logy(z¥) is the number we must raise b to to get ¥
and by lOgb(w) = l’y.

alogy(n) — (alogm))logb(‘l) — plog,(a)
What is the work done?

That depends on what the work per level looks like.

We KNOW we do O(f(n)) work and O(a'*% (™)) work. Question: Which domi-
nates?

CASES:

1. Leaves dominate. Implies that each level does an order of magnitude less
work than the level below it. This is true when f(n) = O(n'ogs(2)=¢).

Note: Clearly top level does order of magnitude less work than leaves.
At level i: a’ nodes do f(n/(b%)) work

— aiO((n % b—i)log,,(a)—e — aio(nlogb(a)—eb—ilogb(a)-i—e)
_ aio(nlogb(a)febie/ai)
O(nlogb(a)febis) (1)
So total work is
O(nlogb(a)—e) + O(nlogb(a)—ebe) + O(nlogb(a)—ebQE I O(nlogb(a)—eblogb(n)e)
— O(nlogb(a)—ene)
0= 2

2. Root node dominates. Implies that each level does order of magnitude
less work than level below it. NOTE: third case from class

Let f = O(n'o8s(®)+e),
Work at level i is:
a,iO(nlOgb(a)+€b7i log, (a)—ie

— O(nlogb(a)+eb—ie) (3)

Total work is

O(nlogb(a)—i-e) _l_O(nlogb(a)-i-eb—e) 4o+ O(nlogb(a))
= O(n*® V%) = f(n) (4)

3. What if f(n) = O(n'°8(®) log*(n))?

Why log®(n)? Because a log is the largest order of magnitude function
that cannot be expressed as n and we’ve covered that case.

At level 7 work

aio(nlogb(a)b—i logy (a) logk (n/bz))
O(n'*® (@ log" (n/b")) ()

Total work:

= O(n'°%@ logh(n)) + O(n'°%(@ logh (n/b)) + ... + O(n'°8+(@)
= O(treeheight - n'°%(¥) 1og* (n))

= O(logy(n)n'*®(* log" (n))
= O(n®V1og"*!(n))

= log(n)f(n) (6)
NOTE: Changing bases in a log is just multiplying by a constant: log,(z) =
log.(x)/log.(b)
EXAMPLES:

e MergeSort:
T(n) =2T(n/2) + O(n)
a=2,b=2n"%() =n Case f(n) = O(n'°&(?). Work is nlogn.

T(n) =8T(n/2) + O(n?)
a=8,b=2n") =n3 Case f(n) < O(n'°&(®)). Work is n*

T(n) = 3T (n/2) + nlogn Case f(n) > O(n'°&(®)). Work is nlogn.

2"T(n/2) +n™ can’t be solved. a is not constant!

0.5T7(n/2) + n doesn’t have a recursion.

5 Universal Hashing

Definition: A family of hash functions H = {hg, hy, ...} is universal if, for
a randomly chosen pair of keys k,I € U and randomly chosen hash function
h € H, the probability that h(k) = h(l) is not more than 1/m where m is the
size of the hash table.

This is useful because if you pick a hash function from H when your program
begins in such a way that an adversary cannot know in advance which function
you will pick, the adversary cannot in advance guess two keys that will map to
the same value.

Example: The family of hash functions
hap(z) = ((az + b) mod p) mod m (7)

where 0 < a < p, b <p, m < p, and |U| < p for prime p is universal.

Proof: Consider k,l € U with k # [. For a given h, let

r = (ak 4+ b) mod p
s = (al +b) mod p (8)

Note that r # s since
r—s=a(k—1) mod p (9)

cannot be zero since 0 < a < p, k < p, and I < p so a(k—1) cannot be a multiple
of p.

Now consider

a = ((r—s)((k—1)"" mod p)) mod p
b = (r—ak) mod p. (10)

Now since r # s, there are only p(p — 1) possible pairs (r, s). Similarly, since we
require a # 0, there are only p(p — 1) pairs (a,b). Equations 10 and 10 give a
one-to-one map between pairs (r,s) and pairs (a,b). Therefore, each choice of
(a,b) must produce a different (r, s) pair. If we pick (a, b) uniformly, at random
then (r,s) is also distributed uniformly at random.

The probability that two keys k and [with k # [have the same hash value is
the probability that » = s mod m. Therefore, we must have that

r—se€{m,2m,...,qm} (11)

where gm < p. This gives us at most [p/m| —1 < (p—1)/m possible values for
s such that s can collide with 7. Since the pairs are distributed at random, and
s # r, we have p — 1 values for s that are all equally probable. Thus

Pr[szrmodm]:pi_l/m _ 1
p—1 m
1
= Pr[h(k) =h()] = — (12)
m
This proof was taken from CLRS Section 11.3.3.

