
Bellman-Ford

Initialize(V,E, s)

1 for v ∈ V
2 d[v]←∞
3 π[v]← NULL
4 d[s]← 0
5 π[s]← s

Relax(u, v)

1 if d[v] > d[u] + w(u, v)
2 d[v]← d[u] + w(u, v)
3 π[v]← u

Bellman-Ford(V,E, s)

1 Initialize(V,E, s)
2 for i = 1 : |V | − 1
3 for each edge (u, v) ∈ E
4 Relax(u, v)
5 for each edge (u, v) ∈ E
6 if d[v] > d[u] + w(u, v)
7 return FALSE
8 return TRUE

DAG-Bellman-Ford(V,E, s)

1 TopologicallySort(V,E)
2 Initialize(V,E)
3 for each vertex u ∈ V taken in topological order
4 for each edge originating at u, (u, v) ∈ E
5 Relax(u, v)

1

Contents

1 Generic Algorithms 2

1.1 Data Structures and Notation . 2

1.2 Algorithm . 2

1.3 Theorems . 2

2 Bellman-Ford 3

2.1 Algorithm . 3

2.2 Correctness . 3

3 Bellman-Ford on a DAG 5

1 Generic Algorithms

1.1 Data Structures and Notation

• d[v] is length of current shortest path from s to v (evolves over search)

• π[v] is current parent of v

• δ(s, v) is length of actual shortest path from s to v

1.2 Algorithm

For single-source shortest path when edges have negative weights (also works when they don’t, but there
are faster algorithms).

NOTE: If graphs have negative weight cycles, the shortest path isn’t well defined, because you’d rather
live in the cycle!

Generic-ShortestPath(V,E, s)

1 Initialize(V,E, s)
2 while there is an edge (u, v) ∈ E s.t. d[v] > d[u] + w(u, v)
3 “somehow” select one such edge (u, v)
4 Relax(u, v)

This never steps if you have negative weight cycles!

All shortest path algorithms are about specifying the “somehow”.

A bad choice can give an exponential running time... That’s very bad.

2

1.3 Theorems

Theorem 0: Running Time The recursion

T (n) = C1 + C2T (n− C3) (1)

gives a running time exponential in n for C2 > 1.

Proof: Look at the tree:

The first level has C2 nodes. The second level has C2
2 nodes. There are n− C3 levels = Cn−C3

2 work at
the bottom level! FAIL.

Theorem 1: Subpath Theorem Let {v1, v2, ..., vn} be a shortest path from v1 to vn. Then any
subsequence of this path from vi to vj is a shortest path from vi to vj .

Proof: Assume the contrary. Assume there is a shortest path from vi to vj with length l < L where
L is the length along the path from vi to vj . Then we could create a shorter path from v1 to vn by
inserting the shorter path from vi to vj .

Theorem: Triangle Inequality ∀u, v, x ∈ V , we have δ(u, v) ≤ δ(u, x) + δ(x, v).

Proof: Assume the contrary. Let δ(u, v) > δ(u, x) + δ(x, v). Then the shortest path from u to x plus
the shortest path from x to v has a shorter length than δ(u, v) contradicting that δ(u, v) is the length
of the shortest path from u to v.

2 Bellman-Ford

2.1 Algorithm

See the first page.

Running time: Initialization: O(|V |), Loop on line 3 O(|V ||E|), Negative cycle checking: O(|E|) ⇒
O(|V ||E|) running time

2.2 Correctness

Lemma 1: Upper Bound Property We always have d[v] ≥ δ(s, v) and if we ever find d[v] = δ(s, v),
d[v] never changes.

Proof: We show that d[v] ≥ δ(s, s) by induction on the number of relaxation steps k.

Base Case: For k = 0, we have d[s] = 0 and d[v] = ∞ for all v ∈ {V \}. If there is no negative cycle,
then δ(s, s) = 0; otherwise δ(s, s) = −∞ so d[s] ≥ δ(s, s).

3

Induction Step: Assume after k − 1 relaxations, d[v] ≥ δ(s, v) for all v ∈ V . Now consider the kth
relaxation on edge (u, v). Firstly, for w ∈ {V \ v}, d[w] does not change so by induction d[w] ≥ δ(s, w).
Now consider we set d[v] = d[u] + (u, v) ≥ δ(s, u) + (u, v) ≥ δ(s, v) where the last step follows by the
triangle inequality.

If we ever achieve d[v] = δ(s, v), we cannot decrease d[v] since we have just shown that d[v] ≥ δ(s, v).
Moreover, we cannot increase d[v] because we only change d[v] during relaxations and relaxations cannot
increase d[v]. Therefore, once we have d[v] = δ(s, v) it cannot change.

Lemma 2: Path Relaxation Assume we have a graph G with no negative cycles. Let p =
〈v0, v1, ..., vj〉 be a shortest path from v0 to vj . Any sequence of calls to Relax that includes, in
order, the relaxations of (v0, v1), (v1, v2), ..., (vj−1, vj) produces d[vj] = δ(v0, vj) after all of these relax-
ations and at all times afterwards. Note that this property holds regardless of what other relaxation
calls are made before, during, or after these relaxations.

Proof: We proceed by induction on the kth vertex in p, showing that after relaxations (v0, v1), ..., (vk−1, vk)
have occurred that d[vk] = δ(v0, vk).

Base Case: k = 0: After initialization we have that d[v0] = 0 = δ(v0, v0).

Induction Step: Assume that we have relaxed, in order, edges (v0, v1), ..., (vk−2, vk−1) and d[vk−1] =
δ(v0, vk−1). Then eventually we will make a relaxation call to (vk−1, vk) since we assume this call
happens at least once after the call to (vk−2, vk−1). By the upper bound property, at the time of
this call d[vk] ≥ δ(v0, vk). In addition, we have that δ(v0, vk) = δ(v0, vk−1) + w(vk−1, vk) because p
is a shortest path. Therefore, d[vk] ≥ d[vk−1] + w(vk−1, vk) and after this relaxation call we will have
d[vk] = d[vk−1] + w(vk−1, vk) = δ(v0, vk). By the upper bound property, this is maintained ever after.

Lemma 3: Bellman-Ford Correctness 1: Assume we have a graph G with no negative cycles
reachable by s. Then after running Bellman-Ford, we have d[v] = δ(s, v) for all v ∈ V reachable from
s.

Proof: If v ∈ V is reachable from s then there must exist an acyclic shortest path p = 〈s, v1, ..., vj〉
where vj = v. Now, since p is acyclic, p can contain no more than V vertices and therefore no more
than |V | − 1 edges. Each time we run through the loop on line 3 of Bellman-Ford, we relax every
edge. Therefore, we relax (s, v1) on the first iteration, (v1, v2) on the second iteration, etc (we also
relax (v1, v2) on the first iteration, of course, but we cannot guarantee that relaxation comes after the
relaxation of (s, v1)). By the time we have reached the |V | − 1 iteration, we must have relaxed every
edge in p in order. Therefore, by the path relaxation property, we have d[v] = δ(s, v) when we have done
|V | − 1 iterations of the loop on line 3.

Corollary 1: Bellman-Ford Correctness 2: For vertex v ∈ V , Bellman-Ford terminates with
d[v] =∞ if and only if v is not reachable from s.

Proof: Let d[v] =∞ and assume v is reachable from s. Then Lemma 3 would give that d[v] = δ(s, v) =
∞, which is a contradiction.

Assume v is not reachable from s. By the upper bound property, we have that d[v] ≥ δ(s, v) at all times.
Since δ(s, v) =∞ we must have d[v] =∞ at all times.

4

Theorem 1: Correctness of Bellman-Ford If G contains no negative cycles reachable from s, the
algorithm returns TRUE and d[v] = δ(s, v) for all v ∈ V . If G does contain a negative weight cycle, the
algorithm returns FALSE.

Proof: If G contains no negative cycles, by Lemma 3 and Corollary 1, d[v] = δ(s, v) for all v ∈ V at the
termination of the loop beginning in line 3. Therefore d[v] = δ(s, v) ≤ δ(s, u) + w(u, v) ≤ d[u] + w(u, v)
by the triangle inequality and the check on line 6 always fails.

Now assume G contains a negative weight cycle that is reachable from s. Let this cycle be c =
〈v0, v1, ..., vj〉 where v0 = vj . Then, by definition, we must have

∑j
i=1 w(vi−1, vi) < 0. We proceed

by contradiction. Assume Bellman-Ford returns TRUE. Then for all v ∈ V , the inequality on line 6
must hold. Specifically, we must have

j∑
i=1

w(vi−1, vi) ≤
j∑

i=1

(d[vi−1] + w(vi−1, vi)) (2)

≤
j∑

i=1

d[vi−1] +

j∑
i=1

w(vi−1, vi) (3)

since v0 = vj ,
∑j

i=1 d[vi] =
∑j

i=1 d[vi−1]. Therefore, we find that
∑j

i=1 w(vi−1, vi) ≥ 0, contradicting
our original assumption that c was a negative cycle. Hence G cannot return TRUE and must return
FALSE.

3 Bellman-Ford on a DAG

Wouldn’t it be nice if we could ensure that we did things in the right order to fulfill the path relaxation
property for all vertices by only looking at each edge once?

Yes.

Say we have a DAG. In what order should we look at the edges? From start to each vertex... Topological
Sort!

See first page for algorithm.

Running Time: Topological sort: O(|V | + |E|), Initialization: O(|V |), Main algorithm: O(|E|) ⇒
O(|V |+ |E|) Linear time!!

Correctness: At the terminiation of DAG-Bellman-Ford, d[v] = δ(s, v) for all v ∈ V .

Proof: If v is not reachable from s then d[v] =∞ since d[v] ≥ δ(s, v) by the upper bound property. Now
assume v is reachable from s and that a shortest path from s to v is 〈v0, v1, ..., vj〉 with v0 = s and vj = v.
Since we have topologically sorted the graph, we process the edges in order (v0, v1), (v1, v2), ..., (vj−1, vj)
since each edge in the path is one farther from s than its preceding edge in the path. Thus by the path
relaxation property, d[v] = δ(s, v).

5

