docdist1

```
# docdist1.py
  Author: Ronald L. Rivest
  Date Last Modified: February 14, 2007
 Change log:
    Version 1:
      Initial version
  Usage:
     docdist1.py filename1 filename2
  This program computes the "distance" between two text files
  as the angle between their word frequency vectors (in radians).
  For each input file, a word-frequency vector is computed as follows:
     (1) the specified file is read in
     (2) it is converted into a list of alphanumeric "words"
Here a "word" is a sequence of consecutive alphanumeric
         characters. Non-alphanumeric characters are treated as blanks.
         Case is not significant.
     (3) for each word, its frequency of occurrence is determined
     (4) the word/frequency lists are sorted into order alphabetically
 The "distance" between two vectors is the angle between them. If x = (x1, x2, ..., xn) is the first vector (xi = freq of word i) and y = (y1, y2, ..., yn) is the second vector, then the angle between them is defined as:
     d(x,y) = arccos(inner\_product(x,y) / (norm(x)*norm(y)))
     inner\_product(x,y) = x1*y1 + x2*y2 + ... xn*yn
     norm(x) = sqrt(inner\_product(x,x))
import math
    # math.acos(x) is the arccosine of x.
    # math.sqrt(\dot{x}) is the square root of x.
import string
    # string.join(words, sep) takes a given list of words,
         and returns a single string resulting from concatenating them
         together, separated by the string sep
    # string.lower(word) converts word to lower-case
import sys
######################################
# Operation 1: read a text file ##
######################################
def read_file(filename):
    Read the text file with the given filename;
    return a list of the lines of text in the file.
        fp = open(filename)
        L = fp readlines()
    except IOError:
        print "Error opening or reading input file: ",filename
        sys.exit()
    return L
# Operation 2: split the text lines into words ##
def get_words_from_line_list(L):
```

```
docdist1
```

```
Parse the given list L of text lines into words.
   Return list of all words found.
   word_list = []
for line in L:
       words_in_line = get_words_from_string(line)
       word_list = word_list + words_in_line
   return word_list
def get_words_from_string(line):
   Return a list of the words in the given input string,
   converting each word to lower-case.
   Input: line (a string)
   Output: a list of strings
             (each string is a sequence of alphanumeric characters)
   .....
   word_list = []
                          # accumulates words in line
   character_list = []
                          # accumulates characters in word
   for c in Tine:
       if c.isalnum():
           character_list.append(c)
       elif len(character_list)>0:
           word = string.join(character_list,"")
word = string.lower(word)
word_list.append(word)
           character_list =
   if len(character_list)>0:
       word = string.join(character_list,"")
word = string.lower(word)
       word_list.append(word)
   return word_list
# Operation 3: count frequency of each word ##
def count_frequency(word_list):
   Return a list giving pairs of form: (word, frequency)
   L = []
   for new_word in word_list:
       for entry in L:
           if new_word == entry[0]:
               entry[1] = entry[1] + 1
               break
       else:
           L.append([new_word,1])
   return L
# Operation 4: sort words into alphabetic order
def insertion_sort(A):
   Sort list A into order, in place.
   From Cormen/Leiserson/Rivest/Stein,
   Introduction to Algorithms (second edition), page 17,
   modified to adjust for fact that Python arrays use
                                    Page 2
```

```
docdist1
   0-indexing.
   for j in range(len(A)):
    key = A[j]
        # insert A[j] into sorted sequence A[0..j-1]
       i = j-1
while i > -1 and A[i] > key:
           A[i+1] = A[i]
           i = i-1
       A[i+1] = key
    return A
## compute word frequencies for input file ##
def word_frequencies_for_file(filename):
    Return alphabetically sorted list of (word, frequency) pairs
   for the given file.
   line_list = read_file(filename)
word_list = get_words_from_line_list(line_list)
freq_mapping = count_frequency(word_list)
    insertion_sort(freq_mapping)
   print "File",filename,":",
print len(line_list),"lines,",
print len(word_list),"words,",
   print len(freq_mapping), "distinct words"
    return freq_mapping
def inner_product(L1,L2):
    Inner product between two vectors, where vectors
   are represented as alphabetically sorted (word, freq) pairs.
   sum = 0.0
    i = 0
   i = 0
   i += 1
       j += 1
elif L1[i][0] < L2[j][0]:
           # word L1[i][0] is in L1 but not L2
           i += 1
       else:
           # word L2[j][0] is in L2 but not L1
             += 1
    return sum
def vector_angle(L1,L2):
    The input is a list of (word, freq) pairs, sorted alphabetically.
```

```
docdist1
Return the angle between these two vectors.

numerator = inner_product(L1,L2)
denominator = math.sqrt(inner_product(L1,L1)*inner_product(L2,L2))
return math.acos(numerator/denominator)

def main():
    if len(sys.argv) != 3:
        print "Usage: docdist1.py filename_1 filename_2"
    else:
        filename_1 = sys.argv[1]
        filename_2 = sys.argv[2]
        sorted_word_list_1 = word_frequencies_for_file(filename_1)
        sorted_word_list_2 = word_frequencies_for_file(filename_2)
        distance = vector_angle(sorted_word_list_1,sorted_word_list_2)
        print "The distance between the documents is: %0.6f (radians)"%distance

if __name__ == "__main__":
    main()
```