
docdist1
docdist1.py
Author: Ronald L. Rivest
Date Last Modified: February 14, 2007
Changelog:
Version 1:
Initial version
#
Usage:
docdist1.py filename1 filename2
#
This program computes the "distance" between two text files
as the angle between their word frequency vectors (in radians).
#
For each input file, a word-frequency vector is computed as follows:
(1) the specified file is read in
(2) it is converted into a list of alphanumeric "words"
Here a "word" is a sequence of consecutive alphanumeric
characters. Non-alphanumeric characters are treated as blanks.
Case is not significant.
(3) for each word, its frequency of occurrence is determined
(4) the word/frequency lists are sorted into order alphabetically
#
The "distance" between two vectors is the angle between them.
If x = (x1, x2, ..., xn) is the first vector (xi = freq of word i)
and y = (y1, y2, ..., yn) is the second vector,
then the angle between them is defined as:
d(x,y) = arccos(inner_product(x,y) / (norm(x)*norm(y)))
where:
inner_product(x,y) = x1*y1 + x2*y2 + ... xn*yn
norm(x) = sqrt(inner_product(x,x))
import math
 # math.acos(x) is the arccosine of x.
 # math.sqrt(x) is the square root of x.
import string
 # string.join(words,sep) takes a given list of words,
 # and returns a single string resulting from concatenating them
 # together, separated by the string sep .
 # string.lower(word) converts word to lower-case
import sys
##################################
Operation 1: read a text file
##################################
def read_file(filename):
 """
 Read the text file with the given filename;
 return a list of the lines of text in the file.
 """
 try:
 fp = open(filename)
 L = fp.readlines()
 except IOError:
 print "Error opening or reading input file: ",filename
 sys.exit()
 return L
###
Operation 2: split the text lines into words
###
def get_words_from_line_list(L):

Page 1

docdist1
 """
 Parse the given list L of text lines into words.
 Return list of all words found.
 """
 word_list = []
 for line in L:
 words_in_line = get_words_from_string(line)
 word_list = word_list + words_in_line
 return word_list
def get_words_from_string(line):
 """
 Return a list of the words in the given input string,
 converting each word to lower-case.
 Input: line (a string)
 Output: a list of strings
 (each string is a sequence of alphanumeric characters)
 """
 word_list = [] # accumulates words in line
 character_list = [] # accumulates characters in word
 for c in line:
 if c.isalnum():
 character_list.append(c)
 elif len(character_list)>0:
 word = string.join(character_list,"")
 word = string.lower(word)
 word_list.append(word)
 character_list = []
 if len(character_list)>0:
 word = string.join(character_list,"")
 word = string.lower(word)
 word_list.append(word)
 return word_list
##
Operation 3: count frequency of each word
##
def count_frequency(word_list):
 """
 Return a list giving pairs of form: (word,frequency)
 """
 L = []
 for new_word in word_list:
 for entry in L:
 if new_word == entry[0]:
 entry[1] = entry[1] + 1
 break
 else:
 L.append([new_word,1])
 return L
###
Operation 4: sort words into alphabetic order
###
def insertion_sort(A):
 """
 Sort list A into order, in place.
 From Cormen/Leiserson/Rivest/Stein,
 Introduction to Algorithms (second edition), page 17,
 modified to adjust for fact that Python arrays use

Page 2

docdist1
 0-indexing.
 """
 for j in range(len(A)):
 key = A[j]
 # insert A[j] into sorted sequence A[0..j-1]
 i = j-1
 while i>-1 and A[i]>key:
 A[i+1] = A[i]
 i = i-1
 A[i+1] = key
 return A
###
compute word frequencies for input file
###
def word_frequencies_for_file(filename):
 """
 Return alphabetically sorted list of (word,frequency) pairs
 for the given file.
 """
 line_list = read_file(filename)
 word_list = get_words_from_line_list(line_list)
 freq_mapping = count_frequency(word_list)
 insertion_sort(freq_mapping)
 print "File",filename,":",
 print len(line_list),"lines,",
 print len(word_list),"words,",
 print len(freq_mapping),"distinct words"
 return freq_mapping
def inner_product(L1,L2):
 """
 Inner product between two vectors, where vectors
 are represented as alphabetically sorted (word,freq) pairs.
 Example: inner_product([["and",3],["of",2],["the",5]],
 [["and",4],["in",1],["of",1],["this",2]]) = 14.0
 """
 sum = 0.0
 i = 0
 j = 0
 while i<len(L1) and j<len(L2):
 # L1[i:] and L2[j:] yet to be processed
 if L1[i][0] == L2[j][0]:
 # both vectors have this word
 sum += L1[i][1] * L2[j][1]
 i += 1
 j += 1
 elif L1[i][0] < L2[j][0]:
 # word L1[i][0] is in L1 but not L2
 i += 1
 else:
 # word L2[j][0] is in L2 but not L1
 j += 1
 return sum
def vector_angle(L1,L2):
 """
 The input is a list of (word,freq) pairs, sorted alphabetically.

Page 3

docdist1
 Return the angle between these two vectors.
 """
 numerator = inner_product(L1,L2)
 denominator = math.sqrt(inner_product(L1,L1)*inner_product(L2,L2))
 return math.acos(numerator/denominator)
def main():
 if len(sys.argv) != 3:
 print "Usage: docdist1.py filename_1 filename_2"
 else:
 filename_1 = sys.argv[1]
 filename_2 = sys.argv[2]
 sorted_word_list_1 = word_frequencies_for_file(filename_1)
 sorted_word_list_2 = word_frequencies_for_file(filename_2)
 distance = vector_angle(sorted_word_list_1,sorted_word_list_2)
 print "The distance between the documents is: %0.6f (radians)"%distance
if __name__ == "__main__":
 main()

Page 4

