Introduction to Algorithms March 9, 2011
Massachusetts Institute of Technology 6.006 Spring 2011
Professors Erik Demaine, Piotr Indyk, and Manolis Kellis Quiz 1 Solutions

Quiz 1 Solutions

Problem 1. True or False [21 points] (7 parts)

For each of the following questions, circle either T (True) or F (False). Explain your choice.
(Your explanation is worth more than your choice of true or false.)

(@) T F The height of any binary search tree with n nodes is O(logn).
Explain:

Solution: False. In the best case, the height of a BST is O(logn) if it is bal-
anced. In the worst case, however, it can be ©(n).

(b) T F Inserting into an AVL tree with n nodes requires O(log n) rotations.
Explain:

Solution: False. There were two ways you can show this.

1. There are cases where inserting into an AVL tree requires no rotations. O (logn)
rotations implies 2(logn) rotations. Since we have insertions that require no
rotations, this means that inserting into an AVL tree does not require €2(logn)
rotations and thus it does not require ©(log n) rotations.

2. Inserting into an AVL tree may look at O(logn) nodes, but it only needs to
perform at most 2 rotations to fix the imbalance. Thus inserting into an AVL tree
requires O(1) rotations, which is not ©(logn).

Both of these were acceptable.

Common mistakes included thinking that rotations needed to be made for each
node in an inserted node’s ancestry line and misunderstanding the problem to
think that we were asking for the runtime of insertion and not the number of
rotations required.

6.006 Quiz 1 Solutions Name

(¢ TF

d TF

The depths of any two leaves in a max heap differ by at most 1.
Explain:

Solution: True. A heap is derived from an array and new levels to a heap are
only added once the leaf level is already full. As a result, a heap’s leaves are only
found in the bottom two levels of the heap and thus the maximum difference
between any two leaves’ depths is 1.

A common mistake was pointing out that a heap could be arbitrarily shaped as
long as the heap property (parent greater than its children in the case of a max-
heap) was maintained. This heap is not a valid heap, as there would be gaps if we
tried to express it in array form, heap operations would no longer have O(logn)
running time, and heap sort would fail when using this heap.

Another common mistake was simply justifying this statement by saying a heap
is balanced. An AVL tree is also balanced, but it does not have the property that
any two leaves have depths that differ by at most 1.

A tree with n nodes and the property that the heights of the two children of any
node differ by at most 2 has O(logn) height.
Explain:

Solution: True. Using the same approach as proving AVL trees have O(logn)
height, we say that n;, is the minimum number of elements in such a tree of height
h.

ny > 1+mn,_1 +np3 (1
ny > 2np_3 (2)
ny, > 2M3 (3)
h < 3lgny 4)
h = O(logn) ()

Grading was fairly tight on this one. Most of the answers that got full credit were
the ones that was able to show the reduction above or something similar. Many
answers did not have enough justification, though stated true statements (e.g. “if
the heights of every node’s two children differ by at most some constant ¢, the
tree will have height O(logn)”, true but we’re looking for why exactly). Some
got to the right conclusion with an alternate method but had some logical flaws.
A common mistake was providing a counter example where the height was greater
than logn. This is not a valid counter example since that’s not what O(logn)
height means. h = O(logn) is comparing the asymptotic relationship between
the height and the number of elements in the tree, it’s not saying h < logn for
all n.

6.006 Quiz 1 Solutions Name

(¢) T F For any constants z,y > 1, we have n* = O(y").

® TF

Explain:

Solution: True. Exponential growth always dominates polynomial growth. To
show more rigorously, we want to show that Z—z = 0 as n goes to infinity. For
large enough n, we have
logn logy
<
n rz+1
(x4 1)logn < nlogy

0<

not < g
n® 1
von
Since % = 0 as n goes to infinity, this shows that Z—z = 0 for the same limit and
thus n* = O(y"). This proof was not necessary for full credit.

Let |[U| = m? and consider hashing with chaining. For any hash function 7 :
U — {1,2,...,m — 1}, there exists a sequence of m insertions that leads to a
chain of length m.

Explain:

Solution: True. Consider any h. By pigeonhole principle, there exists at least
one bucket j € {1,2,...,m — 1} in the hash array such that there is a set S
of m?/(m — 1) > m universe elements i1U such that (i) = j foralli € S.
Inserting all elements in S creates a chain of sufficient length.

Most answers were correct. Some incorrect arguments assumed that 4 is a ran-
dom function (using simple uniform hashing assumption) - this assumption can-
not be made here because we are dealing with any function h. A few other
answers suggested using perfect hashing to show the answer is False. This does
not work: a perfect hash function is constructed for a specific set S, while in the
question we are given h upfront, and want to construct a “bad” set for it.

6.006 Quiz 1 Solutions Name 4

(g) T F Five elements can always be sorted with at most seven comparisons in the com-
parison model.
Explain:

Solution: This question turned out to be “unfortunate”. As such, we decided
to award 3 points to any answer.

The answer to the question is True - there is a way to sort 5 elements using 7
comparison. Unfortunately, the answer is tricky, and no one got it right.

The answer is yes but in order to justify this you would need to give an actual
algorithm (or give the decision tree) for sorting any 5 elements in 7 comparisons.
Here is very clever way to do this':

Compare A to B and C' to D. Without loss of generality (WLOG), suppose
A > Band C > D. Compare A to C. WLOG, suppose A > C. Sort E into
A-C-D. This can be done with two comparisons. Sort B into {F, C, D}. This
can be done with two comparisons, for a total of seven.

On the other hand, there was a great variety of incorrect solutions to this ques-
tions. For clarity, we partition them into two categories: incorrect solutions yield-
ing a correct answer, and incorrect solutions yielding an incorrect answer.

In the first category, the dominant argument was to compare 2° = 128 (the maxi-
mum number of leaves in a decision tree of height 7) to 5! = 120 (the number of
different orderings of 5 elements), and argue that since 128 > 120 the algorithm
must exist. Unfortunately, this only shows that the lower bound argument from
the lecture does not apply, not that there is an algorithm. E.g., for this argument
to hold, one would have to argue that the decision tree can be always made (al-
most) perfectly balanced, which might not be possible in general. In particular,
the optimal number of comparisons to sort a given number n of elements is not
known for general values of n. A few other answers provided an algorithm, but
underestimated the number of comparisons used.

In the second category, most answers compared 51g5 ~ 11.6 to 7, and argued
that since 11.6 > 7 the algorithm cannot exist. Unfortunately, the lower bound
presented in the lecture was lg(n!) not nlgn. In our case this yields 1g(120) =~
6.9, which is smaller than 7. Note that even though nlgn = O(lg(n!)), in this
question we are dealing with a fixed value of n = 5, so the asymptotic arguments
cannot be used here - the constant does matter.

Other arguments assumed a concrete sorting algorithm and showed that it makes
more than 7 comparisons. Not surprisingly, insertion sort and other slow algo-
rithms were quite popular in this line of work. Unfortunately, this only shows
that a particular sorting algorithm makes more than 7 comparisons, not that this
is the case for all algorithms.

Thttp://stackoverflow.com/questions/1534748/design-an-efficient-algorithm-to-sort-5-distinct-keys-in-fewer-than-
8-comparisons

6.006 Quiz 1 Solutions Name

All in all, the question was “unfortunate”. Apologies. On the bright side, if you
read and understood the last few paragraphs, you can consider yourself well-
prepared for the final.

6.006 Quiz 1 Solutions Name

Problem 2. Short Answer [40 points] (8 parts)

(a) What is the running time of these algorithms on a sorted list?

L.

IL.

Insertion sort

Solution: The running time is ©(n). Insertion sort iterates over the list and, for
each element, swaps the element backwards until it’s in the correct position in the
sorted subarray. Thus, for a sorted list, each element will be swapped 0 times and
each step will take O(1) time for a grand total of O(n).

In grading, common errors were misreading that the input was a “sorted list” or
misunderstanding that the insertion sort algorithm swaps backwards. Answers
of ©(n) were given full credit (no justification was needed although incorrect
reasoning would incur a deduction). Answers of O(n?) were docked a couple
of points since this was at least a correct answer although not a tight bound and
indicated a lack of fully understanding the question. Any other answers were not
given any credit.

Merge sort

Solution: Merge sort has the same runtime no matter what which is O(nlogn).
See lecture notes for a derivation of the recurrence. Almost everyone got this
correct.

(b) Solve these recurrences:

L

IL.

T(n) =4T(n/2) + ©(n?)

Solution: This is case 2 of the master method and thus ©(n?logn).
T(n) =T(4n/5) + O(n)

Solution: This is case 3 of the master method and thus O(n).

6.006 Quiz 1 Solutions Name

(¢) How does the key in a node compare to the keys of its children in ...

L

IL.

...a binary search tree?
Solution:
node.left.key < node.key < node.right.key
...amax heap?
Solution:

node.key > node.left.key, node.right.key

(d) Suppose that the universe U of possible keys is {0,1,...,n* — 1}. For a hash table
of size n, what is the greatest number of distinct keys the table can hold with each of
these collision resolution strategies?

L.

IL.

II1.

Chaining

Solution: With chaining, we can hold as many keys as there are in the universe
which, in this case, is n>.

Common errors were miscounting the size of the universe to be n? — 1 or saying
that the table could hold an infinite amount of elements.

Linear probing

Solution: Linear probing can only store as many elements as the size of the
table which is n.

Quadratic probing

Solution: Similarly to linear probing, quadratic probing can only store as many
elements as the size of the table which is n.

6.006 Quiz 1 Solutions Name

(e)

®

What order should we insert the elements {1, 2, ..., 7} into an empty AVL tree so that
we don’t have to perform any rotations on it?

Solution: You should insert in the order {4,2,6,1,3,5,7} to make an AVL tree.
The ordering of {2,6} and the ordering of {1, 3,5, 7} do not matter. One can see the
resulting binary search tree is perfectly balance therefore an AVL tree. One point is
taken off if the student did not explain why the resulting BST is an AVL tree (balanced,
or left and right depth differ by 0). A common mistake is that people gave an output
of a max heap, which is completely different from BST.

Suppose you insert three keys into a hash table with m slots. Assuming the simple
uniform hashing assumption, and given that collisions are resolved by chaining, what
is the probability that both slots 0 and 1 are empty?

Solution: Under SUHA, each key is independent of others and have equal proba-
bility inserting into each of the m slots. So for each key the chance of not inserting
into slot O or 1 is %‘2 And because each key is independent, the total probability is
(mT_Z)?’ A common mistake is that students think the probability of not inserting into
slot 1 is independent of not inserting into slot 0, which is not true. Given a key did not
end up in slot 0, the chance that it will also not end up in slot 1 is Z—j

6.006 Quiz 1 Solutions Name

(g) Rank the following functions by increasing order of growth; that is, find an arrange-

(h)

ment g1, g2, g3, g4 of the functions satisfying g1 = O(g2), g2 = O(g3), g5 = O(ga4).
(For example, the correct ordering of n2, n*, n, n® is n, n%, n®, n?.)

fl — 7,Llogn f2 — \/ﬁ f3 — 7,L?>+sin(n) f4 — lOg n"

Solution: We see logn™ = nlogn. n? < n?tm(< p because sin(n) is be-
tween -1 and 1 for all n. Also n'°¢™ > n¢ for all constant c. So the correct order is
fa, f1, f3, f1. One common mistake is that students do not realize n'/? < n.

Explain why, when resolving hash-table collisions via linear probing, one cannot re-
move an entry from the hash table by resetting the slot to NIL.

Solution: When one tries to look up a key in the hash table, it will return NIL when
it sees an empty slot and therefore stop the lookup. So if one deletes a slot by resetting
the slot to NIL, it will break the chain and one may not be able to find items that were
inserted after the key in the deleted slot. Full credit is given for the correct explanation
or a correct example.

6.006 Quiz 1 Solutions Name

Problem 3. You Are The Computer [20 points] (4 parts)

(a) Find the peak that our O(n)-time 2D peak finding algorithm returns when used on the
following matrix:

12[1

Solution: Our peak finding algorithm will find the 24 element in the bottom right
as a peak. The maximum of the first window-frame is 22, in the eighth row and fifth
column. It’s not a peak, since 23 to its right is larger. The algorithm recurses on the
bottom right 3 by 3 subgrid:

1711 |16
7|8 |24
23 (121 9

The window-frame of this subgrid is the entire subgrid. Its maximum is 24, which is
a peak.

One common mistake on this problem was checking whether every element of the
window-frame was a peak. Our 2D peak finding algorithm only checks whether the
maximum on the window-frame is a peak; if it checked every element of the window-
frame, then recursive calls to the peak finding algorithm might return something that
is locally a peak but not globally a peak. The recitation notes have a more detailed
justification.

6.006 Quiz 1 Solutions Name 11

(b) What is the max-heap resulting from performing on the node storing 6?

Solution: will swap 6 with its larger child until 6 reaches a position where it satisfies
the max-heap property. The correct heap is:

6.006 Quiz 1 Solutions Name 12

(c) What binary search tree is obtained after the root of this tree is deleted?

Solution: The correct algorithm replaces 7 with the successor (next-largest) node of
7, which is 10. The right subtree of 10 is moved to the location 10 was originally in.

Alternatively, you can replace 7 with its predecessor 6. (If 6 had a left subtree, it
would be moved to where 6 was originally.)

A common mistake on this problem was to use something resembling , recusively
moving the larger child up to replace the deleted parent. This does not result in a valid
BST.

6.006 Quiz 1 Solutions Name 13

(d) What does the following AVL tree look like after we perform the operations and (in
that order)?

Solution: The 12 is initially inserted as a right child of 11. This breaks the AVL
property for node 10, however, since its right subtree has a depth 2 greater than its left
subtree. We need to left-rotate node 10 to fix the tree.

Next, we delete node 3. After this delete, the AVL property still holds for all nodes,
so we don’t need to do any more rotations.

6.006 Quiz 1 Solutions Name

The most common mistakes on this problem were incorrect or unnecessary rotations.

14

6.006 Quiz 1 Solutions Name 15

Problem 4. 3D Peak Finding [10 points]

Consider a 3D matrix B of integers of size n X n x n. Define the neighborhood of an element
x = Bli][j][k] to consist of

Bli+1)[5][k], Bli][j + 1]k}, Bld[j][k +1],
Bli —1][5][k], B[— k], Bldlj][k —1],

that is, the six elements bordering the one in question, not including diagonals. (For elements on
a face we consider only five neighbors; for elements on an edge we consider only four neighbors;
and for the eight corner elements we consider only three.) An element x is a peak of B if it is
greater than or equal to all of its neighbors. Consider this algorithm for finding a peak in matrix B5:

1. Consider the nine planes 1 = 0, ¢ = 5,1 =n—-1,7=0,=5,7=n—1L,k =0,k = 7,
k = n — 1, which divide the matrix into eight submatrices.

2. Find the maximum element m on any of the nine planes.

3. If m is a peak, return it.

4. Otherwise, m has a larger neighbor element. Recurse into the submatrix that contains that
larger neighbor element (including elements in bordering planes).

What is the running time of this 3D peak finding algorithm?

Solution: Size of original problem of finding a peak in a n x n x n 3D matrix is 7'(n). Time
taken to divide is finding the maximum element of nine n X n planes, which takes O(n?). Size
of subproblem to recurse to is 7'(n/2), and there is only one subproblem. Recurrence is 7'(n) =
T(n/2) + O(n?), which is O(n?) by Master Theorem.

Each of the following were awarded 2 points:

1.Correct size of the subproblem (n/2). A common mistake was to think that subproblem

sizes were n/8. The reason for the confusion was that the total volume is indeed 1/8th, as
(n/2)* =n?/8.
2.Correct number of subproblems (which is 1). A common mistake was to think that there were

8 subproblems, but in fact, we recurse on only one of the subcubes.

3.Correct time for max finding (f(n) = O(n?). A common mistake was to think that this could
be done with 2D peak finding, but in fact we’re looking for the maximum, not the peak, of
each array, hence we need to examine all n? elements).

4.Correct case of the master theorem (case 3) and explanation of why this case applies.

5.Correct final runtime (O(n?)). If this number appeared magically with very little or no expla-
nation, a maximum of 4 points were awarded, depending on the strength of the explanation,
as all the above points were missing.

6.006 Quiz 1 Solutions Name 16

Problem 5. Augmenting AVL Trees [15 points]

In Problem Set 1, we saw how to augment an AVL tree so that we can quickly compute the function

which returns the number of items in the range from a to b in tree 7. We did so by maintaining a
size field in every node that stored the number of nodes in the subtree rooted at that node, including
the node itself.

Describe how to augment an AVL tree to quickly compute which returns the average of all the
values of the nodes in the subtree rooted at node z in the tree 7". Describe the augmentation and
show how to update the tree in O(1) time when a rotation is being performed on a tree (which
might happen after an insert or delete to keep the tree balanced).

Solution: We will begin by augmenting the AVL tree by storing size (defined as in PS1) and
sum at each node. The sum field at a node will contain the sum of the values of the nodes in the
subtree rooted at that node. Remember, as always, that the “subtree rooted at " includes x. Some
solutions didn’t include x, which doesn’t automatically make the solution incorrect but made it
easier to make errors elsewhere. Some solutions also assumed a size field without augmenting
each node with one; remember that AVL trees only store height (for balancing purposes). Some
solutions also stored the average at each node instead of the sum; this is not necessarily incorrect,
but these solutions universally frequently recomputed the sum by multiplying the average by the
size.

We can update both sum and size fields as we walk down the tree during insertions and deletions
without increasing the asymptotic time complexity of those operations. You might also observe
that, for a leaf node x, z.size = 1 and x.sum = x.value. (You were not required to discuss any
of these details.)

The average function can then be computed for node = in O(1) time by dividing x.sum by x.size.

Now let’s examine what happens during a rotation that transforms the tree shown on the left into
the one shown on the right. A complete solution notes that only the augmented values at A and B
need to be recomputed; since the membership of the subtree shown does not change (despite being
rearranged), no ancestors are affected, and since none of the subtrees «, (3, v are modified, none of
their augmented values are affected either.

6.006 Quiz 1 Solutions Name 17

This can be done in one of two ways; first, you can simply apply the definitions of sizze and of sum
to both A and B; second, you can account for the nodes that are entering and leaving the subtrees
rooted at each of A and B.

If you chose to recompute the augmented values, you should have noted that A.size = 14 .size+
v.size and A.sum = A.walue + [.sum + 7y.value needed to be computed before B.size =
1 + a.size + A.size and B.sum = B.value + a.sum + A.sum.

If you chose the second strategy, then you should have noted that B and the nodes in « left the
subtree rooted at A and that A and the nodes in ~ entered the subtree rooted at B. Thus the proper
update operations were A.size = A.size — (1 +a.size), A.sum = A.sum — (B.value + a.sum),
B.size = B.size + 1 + v.size, and B.sum = B.sum + A.value 4+ v.size. (Note that neither
depends on the augmented values of the other node being updated, so order does not matter.)

Points were given for describing augmentations, describing the implementation of the average
function, discussing how the rotation operation could be completed in O(1) time (e.g., by noting
that only A and B needed to be updated), and describing clearly, correctly, and concisely how the
augmentations described would need to be updated.

6.006 Quiz 1 Solutions Name 18

Problem 6. Word Search [14 points]

A word search puzzle consists of an n xn grid of characters and a “word bank” containing m words
each length [. Thus, the total size of the input is ©(n? + ml). Each of the m words in the word
bank is hidden in the grid, either horizontally or vertically (not diagonally in this problem). Note
that the words may be hidden in reverse, as seen in the case of SORT and DICT in the example
below.

Word Search Example (n = 8, m = 6,1 = 4)
A

T
C
I
D
D
P
W

X| G| Z| K| = «»n| | =
Ol R o= | 2=
| =< O] w| ~ Ol ®

® O| LR Qoo
CIO| =~ | Q|| »
w o= m > m A =
O Q||| T v —~| O

A~

Word bank: ALGO, DICT, HASH, HEAP, MATH, SORT

Describe an algorithm that finds all the words in the word bank in the puzzle (i.e., returns the
coordinates of the first letter of each word) and analyze its runtime in terms of n, m, and [. Full
credit will go to algorithms with the optimal runtime.

Solution: First hash each of the m words of length [using a rolling-hash-friendly hash function,
and put them into a hash table H of size ©(n?), say using chaining for collision resolution. Also
hash the reverse of all the words and insert them into H. This part takes O(ml) time, because
we spend O([) time to compute the hash value of each word plus O(1) time to insert it into H
(assuming simple uniform hashing).

Now use a rolling hash on each of the n rows and n columns. Each row and column produces
n — [+ 1 hashes of substrings of length [, using just O(n) time because the hash can be rolled
in O(1) time per character. Overall, because there are n rows and n columns, this work takes
O(n?) time. If one of these substring hashes appears in the table H, then we need to test whether
the substring and word are actually the same, and did not just happen to have the same hash
value. (A common error was to skip this “double checking”.) This check takes O(l) time per
collision (and possible actual match), but the probability that a substring—word pair hash to the
same slot is O(1/(m + n)), and there are O(n*m) such pairs, so the total cost for such checks
is O(n?*ml/n?) = O(ml). (Almost no one did this analysis, but it is necessary for a completely
correct solution.)

The total time for this algorithm is O(ml + n?), which is optimal because we at least need to read
the input to solve this problem.

6.006 Quiz 1 Solutions Name 19

Grading scheme: The most common mistake, not double-checking that hash collisions were actu-
ally matches, reduced an otherwise correct solution by 2 points. Forgetting to check the reverses of
strings (or rows and columns) also reduced by 2 points. A correct but suboptimal algorithm (e.g.,
checking each word against each possible location) received a base score of 7. Incorrect solutions
generally received a score of (0, except that mentioning “rolling hashing” could result in up to 3
points.

