Newton’s Method

6.006 Review Session
Problem Statement

• Given a function, $f(x)$, find its zeros, i.e. all x such that:

$$f(x) = 0$$

• A close approximation should be sufficient.
Newton’s Method

• Idea: iteratively find better and better approximations.
 – Function should be “reasonably well-behaved”.

• Newton’s Method Steps:
 – Start with an approximation to the root x_0.
 – Iterate using:
 \[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]
Intuition

Use tangent line to get closer to the actual value of the solution.
Worked Example 1

• Approximate 1 / 2011 using Newton’s method.
 – Let $f(x) = 1/x - 2011$
 – Guess $x_0 = 0.0005$
 – Then $x_{i+1} = 2x_i - 2011x_i^2$ (after simplifying).
 – Thus:
 • $x_1 = 0.00049725$
 • $x_2 = 0.0004972650418125$
 – Actual value: 0.00049726504226752855
Worked Example 2

• Approximate 2011^{0.5}
 – Let \(f(x) = x^2 - 2011 \)
 – Guess \(x_0 = 40. \)
 – Then \(x_{i+1} = 0.5 \times x_i + 1005.5 / x_i \)
 – Thus:
 • \(x_1 = 45.1375 \)
 • \(x_2 = 44.845127734699531 \)
 – Actual value: 44.844174649557324