
6.006 Intro to Algorithms QUIZ 1 REVIEW NOTES March 8, 2011

Asymptotic Analysis
For functions f(n), g(n): f(n) = O(g(n)) if there exist m,x0 such that

|f(n)| ≤ m · |g(n)| for all x > x0.

Similarly, f(n) = Ω(g(n)) if there exist m,x0 such that

|f(n)| ≥ m · |g(n)| for all x > x0.

f(n) = Θ(g(n)) if and only if f(n) = O(g(n) and f(n) = Ω(g(n))

Doc Dist
Problem: Find how similar two documents (list of strings) are.

Approach: Transform these documents into vectors where each dimension corresponds to
a word and the magnitude of that dimension corresponds to the frequency of the word in that
document. Once the two documents have been transformed into vectors, we can quantify the
similarity of the documents by finding the angle between their corresponding vectors like so

θ(D1, D2) = arccos
D1 ·D2

||D1|| · ||D2||

The smaller the angle, the more similar two vectors are. During implementation in python,
these are some of the optimizations we made:

• Using the list operation extend instead of list concatenation (+)

• Counting word frequencies using dictionary instead of lists of (word, frequency) tuples

• Using merge sort instead of insertion sort

• Using the dictionary to calculate dot product instead of creating sorted (word, frequency)
tuples

Peak Finding

1D Peak Finding Variant
Problem: Given a list of n numbers, find a peak element, defined as an element that is greater than
or equal to its neighbors.

Approach: Look at the middle element and check to see if it’s a peak. If so, we found a peak.
Otherwise, it must have a neighboring element that is greater. Recurse into the half that contains
this larger neighbor (this half must contain a peak) and repeat until a peak is found.

Analysis: Recurrence is T (n) = T (n/2) +O(1). Solve to get a total runtime of O(log n)

6.006 Intro to Algorithms QUIZ 1 REVIEW NOTES March 8, 2011

2D Peak Finding Variant
Problem: Given a n × n matrix of numbers, find a peak element, defined as an element that is
greater than or equal to its neighbors.

Approach: Take the maximum element found in the matrix “window frame” defined as columns
0, n

2
, and n − 1 and rows 0, n

2
, and n − 1. Check to see if this maximum element is a peak. If so,

we found a peak. Otherwise, it must have a neighboring element that is greater. Recurse into the
quadrant that contains this larger neighbor (this quadrant must contain a peak) and repeat until a
peak is found.

Analysis: Recurrence is T (n) = T (n/4) +O(n). Solve to get a total runtime of O(n)

Binary Search Trees

BST Structure
Binary search trees are made up of nodes that contain the following parameters:

• x.key - Value stored in node x

• x.left- Pointer to the left child of node x. NIL if x has no left child

• x.right - Pointer to the right child of node x. NIL if x has no right child

• x.parent - Pointer to the parent node of node x. NIL if x has no parent, i.e. x is the root of
the tree

BST property: Each node has the property that every key found in the node’s left subtree is
less than or equal to the key at that node and every key found in the node’s right subtree is greater
than or equal to the key at that node.

6.006 Intro to Algorithms QUIZ 1 REVIEW NOTES March 8, 2011

BST Operations
Binary search trees have the following operations that allows users to search for elements and ma-
nipulate the tree.

search(k)
Description: Find key k. Return the node that contains k if it exists or NIL if it is not in the

tree.
Approach: Starting at the root, check to see if the node we’re at contains key k. If so, return

that node. If not, traverse to the left child if k is smaller or traverse to the right child if k is larger
and repeat. If we reach NIL before finding k, then k is not in the tree and we return NIL.

Analysis: Searching could potentially go along the longest branch of the tree, so the runtime
of search is O(h) where h is the height of the tree.

insert(k)
Description: Insert key k into the tree.
Approach: Starting at the root, compare the key of the node we’re at to k. Traverse to the left

child if k is smaller or traverse to the right child otherwise and repeat until we reach NIL. Once we
reach NIL, replace the NIL node with a node containing k, thus inserting k into the tree.

Analysis: Searching where to insert k could potentially go along the longest branch of the
tree, so the runtime of insert is O(h) where h is the height of the tree.

find-min(x)
Description: Find the node with the minimum key of the tree rooted at node x and return it.
Approach: Starting at x, keep traversing to the left child until we reach a node with no left

child. This node contains the minimum key, so we return it.
Analysis: The left-most branch could potentially be the longest branch of the tree, so the

runtime of find-min is O(h) where h is the height of the tree.

next-larger(x)
Description: Find the node that contains the next larger key relative to the key at node x.
Approach: If x has a right child, return find-min(x.right). Otherwise, traverse upwards

through the tree in x’s ancestry line until we reach a node with a larger key than x’s key and
return this node.

Analysis: We could potentially go through the longest branch of the tree up x’s ancestry line
or down x’s right subtree so the runtime of find-min is O(h) where h is the height of the tree.

delete(x)
Description: Remove node x from the tree while maintaining the tree’s properties
Approach: If x has no children, just remove it by replacing x with NIL. If x has one child,

splice out x by linking x’s parent to x’s child. If x has two children, splice out x’s successor and
replace x with x’s successor.

6.006 Intro to Algorithms QUIZ 1 REVIEW NOTES March 8, 2011

Analysis: Finding a successor using next-larger takes O(h), so delete takes O(h) as
well.

in-order-walk(x)
Description: Traverses through the tree rooted at node x in increasing order and prints out

every key
Approach: Recursively call in-order-walk on x’s left child, then print out x’s key, and

finally recursively call in-order-walk on x’s right child.
Analysis: Every node is visited once. in-order-walk takes O(n) time where n is the

number of nodes in the tree rooted at x

AVL Trees
AVL trees are balanced binary search trees where each node is augmented to have an additional
height parameter, defined as the length of the longest branch of the tree rooted at that node. The
height of a leaf node is 0 and the height of a NIL node can be treated as -1.

AVL Tree property: An AVL tree has the property that the height of the children of each
node differ by at most one.

This property allows us to constrain the height of the tree to Θ(log n), which is important since
most of our operations had a runtime of O(h). To prove this, let nh be the minimum number of
nodes of an AVL tree of height h. To construct this minimum AVL tree, the root node must have a
child of height h− 1 and a child of height h− 2. The total number of nodes in this minimum AVL
tree is thus the sum of the sizes of the two children plus the root node itself. We get the following
inequality:

nh ≥ 1 + nh−1 + nh−2 (1)
nh > 2nh−2 (2)
nh > 2(2nh−4) (3)
nh > 2(2(2(2...(2n0 or 1)...) (4)

nh > 2h/2 (5)
h < 2 lg nh (6)

Showing that AVL tree’s height is O(log n). The lower bound can be calculated similarly to
show that height is Θ(log n).

AVL Rotations
Searching through an AVL tree is no different than searching through a binary search tree. How-
ever, when we manipulate the AVL tree through insertions and deletions, we have to use rotation
operations to ensure that the AVL tree property is maintained.

6.006 Intro to Algorithms QUIZ 1 REVIEW NOTES March 8, 2011

Rotations move around nodes in an AVL tree, changing the heights of some nodes while main-
taining the binary search tree property that preserves the ordering of the node’s values. There are
two rotations which are the reverse of each other:

Note that when a rotation is made, the heights of A and B must be updated to maintain correct-
ness.

Insertion and deletion in an AVL tree begins exactly the same as an insertion and deletion
in a binary search tree. Once a node is inserted or deleted though, you must check the node’s
ancestry line and make sure their height is correct, as the insertion or deletion may affect those
heights. Also, an insertion or deletion may lead to a violation of the AVL tree property and cause
the heights of a node’s children to differ by two. When this happens, the proper rotations must
be executed to restore the AVL tree property. Note that in the case of deletions, multiple rotations
may be required since one rotation may cause an imbalance elsewhere in the tree.

Tree Augmentation
An AVL tree’s nodes are augmented to include a height parameter. Another augmentation example
is subtree size. Every node contains a parameter size that represents the size of the subtree rooted
at that node. Insertion in this augmented tree maintains the correctness of the size parameter by
incrementing size of each node traversed as we look for where to insert the new key. Deletion in
this augmented tree must decrement size of the ancestry line of the removed node.

