
1 Overview

• Rolling Hash

• Sorting

• Master Theorem

• Universal Hashing

2 Rolling Hash

Idea: Hash functions can be related!

Example: Hashing strings “the” and “her”

Converting to numbers:

“the” = (t · (26)2 + h · (26) + e)

“her” = (h · (26)2 + e · (26) + r) = 26(“the”−t) + r

In general: Converting to base-b numbers using:

N(S) = S0b
L + S1b

L−1 + S2b
L−2 + ... + SL−1b + SL

Given S and S′ = S0:L and S′′ = Sn:L+M+n

N(S′′) = bM+n(N(S′)− bL−nN(S′0:n)) + N(S′′L+1:L+n+M )

Mod properties:

ab mod m = ((a mod m)(b mod m)) mod m

(a + b) mod m = ((a mod m) + (b mod m)) mod m

hm(S) = N(S) mod m = ((((S0 mod m)(bL mod m)) mod m)+...+SL mod m) mod m

hm(S′′) = N(S′′) mod m

= (bM+n(hm(S′)− bL−nhm(S′0:n)) + hm(S′′L+1:L+M )) mod m

Just store division hash!

One character move:

(b(hm(S′)− bL−1hm(S′0)) + hm(S′′L+1)) mod m

Constant time hash calculation!
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Can be used for string matching (Rabin-Karp):

Given string S and text T

• Compute hm(S)

• Compute hash for each string of length L in T

• If hash = hm(S), compare strings character-by-character O(L)

Time: O(|S|+ |T | − |S|+ |S|c) = O(|T |+ |S|c)

Using signatures, c is 1/|T |.

3 Sorting

Idea: Given list of numbers, sort them from smallest to largest.

Algorithms: INSERTION SORT (ONLY IF NECESSARY)

DIAGRAM.

LOOP PROPERTY: At iteration j, we have an array of j − 1 sorted elements.

We put the jth element of the original list into the array in the correct place,
creating an array of j sorted elements.

SPACE: O(n) This can be done in place.

TIME: O(n2)

EXAMPLE:

1. 9, 8, 7, 6, 5

2. 8, 9, 7, 6, 5

3. 7, 8, 9, 6, 5

4. 6, 7, 8, 9

5. 5, 6, 7, 8, 9

At each step j you must look through j − 1 elements:∑n−1
j=0 j = (n− 1)(n− 2)/2 = O(n2)

MERGE SORT
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1. One element, done

2. Merge-Sort(A[1 : n/2])

3. Merge-Sort(A[n/2 + 1 : n])

4. Merge two arrays

Two-Finger Algorithm (If necessary ONLY)

Idea: One finger in each list. Advance finger on smaller element.

Example:

1 2

5 3

19 18

21 25

1 2 3 5 18 19 21 25

Time: O(n) since you only touch each element once

Space: If you create a new array each time n log n but can be done in place
(complicated)

Best Case: O(n) if already sorted (yay good!)

4 Master Theorem

IDEA: Used to solve running time for recurrence relations. Like Merge Sort.

T (n) = 2T (n/2) + O(n)

General form: T = aT (n/b) + f(n)

DIAGRAM.

Height: logb(n)

Number of leaves: alogb(n)

LOG PROPERTY:

alogb(n) = nlogb(a)

logb(n) = logb(aloga(n)) = loga(n) logb(a)

logb(xy) = ylogb(x) because logb(xy) is the number we must raise b to to get xy

and by logb(x) = xy.
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alogb(n) =
(
aloga(n)

)logb(a) = nlogb(a)

What is the work done?

That depends on what the work per level looks like.

We KNOW we do O(f(n)) work and O(alogb(n)) work. Question: Which domi-
nates?

CASES: SHOW IN DIAGRAM!!

1. Leaves dominate. Implies that each level does an order of magnitude less
work than the level below it. This is true when f(n) = O(nlogb(a)−ε):

Note: Clearly top level does order of magnitude less work than leaves.

At level i: ai nodes do f(n/(bi)) work

= aiO((n ∗ b−i)logb(a)−ε = aiO(nlogb(a)−εb−ilogb(a)+ε) (1)
= aiO(nlogb(a)−εbiε/ai) (2)
= O(nlogb(a)−εbiε (3)

So total work is

O(nlogb(a)−ε) + O(nlogb(a)−εbε) + O(nlogb(a)−εb2ε + ... + O(nlogb(a)−εblogb(n)ε)(4)
= O(nlogb(a)−εnε) (5)
= O(nlogb(a)) (6)

2. Root node dominates. Implies that each level does order of magnitude
less work than level below it. NOTE: third case from class

Let f = O(nlogb(a)+ε).

Work at level i is:

aiO(nlogb(a)+εb−i logb(a)−iε (7)
= O(nlogb(a)+εb−iε) (8)

Total work is

O(nlogb(a)+ε) + O(nlogb(a)+εb−ε) + ... + O(nlogb(a)) = O(nlogb(a)+ε) = f(n)(9)

3. What if f(n) = O(nlogb(a) logk(n))?

Why logk(n)? Because a log is the largest order of magnitude function
that cannot be expressed as nε and we’ve covered that case.

At level i work

= aiO(nlogb(a)b−i logb(a) logk(n/bi)) (10)
= O(nlogb(a) logk(n/bi)) (11)
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Total work:

= O(nlogb(a) logk(n)) + O(nlogb(a) logk(n/b)) + ... + O(nlogb(a))(12)
= O(treeheight · nlogb(a) logk(n)) (13)
= O(logb(n)nlogb(a) logk(n)) (14)
= O(nlogb(a) logk+1(n)) (15)
= log(n)f(n) (16)

NOTE: Changing bases in a log is just multiplying by a constant: logb(x) =
logc(x)/logc(b)

EXAMPLES:

• MergeSort:

T (n) = 2T (n/2) + O(n)

a = 2, b = 2, nlogb(a) = n Case f(n) = O(nlogb(a)). Work is n log n.

• T (n) = 8T (n/2) + O(n2)

a = 8, b = 2, nlogb(a) = n3 Case f(n) < O(nlogb(a)). Work is n3.

• T (n) = 3T (n/2) + n log n Case f(n) > O(nlogb(a)). Work is n log n.

• 2nT (n/2) + nn can’t be solved. a is not constant!

• 0.5T (n/2) + n doesn’t have a recursion.

5 Universal Hashing

Definition: A family of hash functions H = {h0, h1, ...} is universal if, for
a randomly chosen pair of keys k, l ∈ U and randomly chosen hash function
h ∈ H, the probability that h(k) = h(l) is not more than 1/m where m is the
size of the hash table.

This is useful because if you pick a hash function from H when your program
begins in such a way that an adversary cannot know in advance which function
you will pick, the adversary cannot in advance guess two keys that will map to
the same value.

Example: The family of hash functions

ha,b(x) = ((ax + b) mod p) mod m (17)

where 0 < a < p, b < p, m < p, and |U | < p for prime p is universal.
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Proof: Consider k, l ∈ U with k 6= l. For a given ha,b let

r = (ak + b) mod p (18)
s = (al + b) mod p (19)

Note that r 6= s since
r − s ≡ a(k − l) mod p (20)

cannot be zero since 0 < a < p, k < p, and l < p so a(k− l) cannot be a multiple
of p.

Now consider

a = ((r − s)((k − l)−1 mod p)) mod p (21)
b = (r − ak) mod p. (22)

Now since r 6= s, there are only p(p− 1) possible pairs (r, s). Similarly, since we
require a 6= 0, there are only p(p − 1) pairs (a, b). Equations 21 and 22 give a
one-to-one map between pairs (r, s) and pairs (a, b). Therefore, each choice of
(a, b) must produce a different (r, s) pair. If we pick (a, b) uniformly, at random
then (r, s) is also distributed uniformly at random.

The probability that two keys k and l with k 6= l have the same hash value is
the probability that r ≡ s mod m. Therefore, we must have that

r − s ∈ {m, 2m, ..., qm} (23)

where qm < p. This gives us at most dp/me− 1 ≤ (p− 1)/m possible values for
s such that s can collide with r. Since the pairs are distributed at random, and
s 6= r, we have p− 1 values for s that are all equally probable. Thus

Pr[s ≡ r mod m] =
p− 1/m

p− 1
=

1
m

(24)

⇒ Pr[h(k) = h(l)] =
1
m

(25)

This proof was taken from CLRS Section 11.3.3.
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