1 Overview

- Rolling Hash
- Sorting
- Master Theorem
- Universal Hashing

2 Rolling Hash

Idea: Hash functions can be related!
Example: Hashing strings "the" and "her"
Converting to numbers:
"the" $=\left(t \cdot(26)^{2}+h \cdot(26)+e\right)$
"her" $=\left(h \cdot(26)^{2}+e \cdot(26)+r\right)=26($ "the" $-t)+r$
In general: Converting to base- b numbers using:
$N(S)=S_{0} b^{L}+S_{1} b^{L-1}+S_{2} b^{L-2}+\ldots+S_{L-1} b+S_{L}$
Given S and $S^{\prime}=S_{0: L}$ and $S^{\prime \prime}=S_{n: L+M+n}$
$N\left(S^{\prime \prime}\right)=b^{M+n}\left(N\left(S^{\prime}\right)-b^{L-n} N\left(S_{0: n}^{\prime}\right)\right)+N\left(S_{L+1: L+n+M}^{\prime \prime}\right)$
Mod properties:
$a b \bmod m=((a \bmod m)(b \bmod m)) \bmod m$
$(a+b) \bmod m=((a \bmod m)+(b \bmod m)) \bmod m$
$h_{m}(S)=N(S) \bmod m=\left(\left(\left(\left(S_{0} \bmod m\right)\left(b^{L} \bmod m\right)\right) \bmod m\right)+\ldots+S_{L} \bmod m\right) \bmod m$

$$
\begin{aligned}
h_{m}\left(S^{\prime \prime}\right) & =N\left(S^{\prime \prime}\right) \bmod m \\
& =\left(b^{M+n}\left(h_{m}\left(S^{\prime}\right)-b^{L-n} h_{m}\left(S_{0: n}^{\prime}\right)\right)+h_{m}\left(S_{L+1: L+M}^{\prime \prime}\right)\right) \bmod m
\end{aligned}
$$

Just store division hash!
One character move:
$\left(b\left(h_{m}\left(S^{\prime}\right)-b^{L-1} h_{m}\left(S_{0}^{\prime}\right)\right)+h_{m}\left(S_{L+1}^{\prime \prime}\right)\right) \bmod m$
Constant time hash calculation!

Can be used for string matching (Rabin-Karp):
Given string S and text T

- Compute $h_{m}(S)$
- Compute hash for each string of length L in T
- If hash $=h_{m}(S)$, compare strings character-by-character $O(L)$

Time: $O(|S|+|T|-|S|+|S| c)=O(|T|+|S| c)$
Using signatures, c is $1 /|T|$.

3 Sorting

Idea: Given list of numbers, sort them from smallest to largest.
Algorithms: INSERTION SORT (ONLY IF NECESSARY)
DIAGRAM.
LOOP PROPERTY: At iteration j, we have an array of $j-1$ sorted elements.
We put the j th element of the original list into the array in the correct place, creating an array of j sorted elements.

SPACE: $O(n)$ This can be done in place.
TIME: $O\left(n^{2}\right)$
EXAMPLE:

1. $9,8,7,6,5$
2. $8,9,7,6,5$
3. $7,8,9,6,5$
4. $6,7,8,9$
5. $5,6,7,8,9$

At each step j you must look through $j-1$ elements:
$\sum_{j=0}^{n-1} j=(n-1)(n-2) / 2=O\left(n^{2}\right)$
MERGE SORT

1. One element, done
2. Merge-Sort $(A[1: n / 2])$
3. Merge-Sort $(A[n / 2+1: n])$
4. Merge two arrays

Two-Finger Algorithm (If necessary ONLY)
Idea: One finger in each list. Advance finger on smaller element.
Example:
12
53
1918
2125
123518192125
Time: $O(n)$ since you only touch each element once
Space: If you create a new array each time $n \log n$ but can be done in place (complicated)

Best Case: $O(n)$ if already sorted (yay good!)

4 Master Theorem

IDEA: Used to solve running time for recurrence relations. Like Merge Sort.
$T(n)=2 T(n / 2)+O(n)$
General form: $T=a T(n / b)+f(n)$
DIAGRAM.
Height: $\log _{b}(n)$
Number of leaves: $a^{\log _{b}(n)}$
LOG PROPERTY:
$a^{\log _{b}(n)}=n^{\log _{b}(a)}$
$\log _{b}(n)=\log _{b}\left(a^{\log _{a}(n)}\right)=\log _{a}(n) \log _{b}(a)$
$\log _{b}\left(x^{y}\right)=y \log _{b}(x)$ because $\log _{b}\left(x^{y}\right)$ is the number we must raise b to to get x^{y} and $b^{y \log _{b}(x)}=x^{y}$.

$$
a^{\log _{b}(n)}=\left(a^{\log _{a}(n)}\right)^{\log _{b}(a)}=n^{\log _{b}(a)}
$$

What is the work done?
That depends on what the work per level looks like.
We KNOW we do $O(f(n))$ work and $O\left(a^{\log _{b}(n)}\right)$ work. Question: Which dominates?

CASES: SHOW IN DIAGRAM!!

1. Leaves dominate. Implies that each level does an order of magnitude less work than the level below it. This is true when $f(n)=O\left(n^{\log _{b}(a)-\epsilon}\right)$:
Note: Clearly top level does order of magnitude less work than leaves.
At level i : a^{i} nodes do $f\left(n /\left(b^{i}\right)\right)$ work

$$
\begin{align*}
& =a^{i} O\left(\left(n * b^{-i}\right)^{\log _{b}(a)-\epsilon}=a^{i} O\left(n^{\log _{b}(a)-\epsilon} b^{-i \log _{b}(a)+\epsilon}\right)\right. \tag{1}\\
& =a^{i} O\left(n^{\log _{b}(a)-\epsilon} b^{i \epsilon} / a^{i}\right) \tag{2}\\
& =O\left(n^{\log _{b}(a)-\epsilon} b^{i \epsilon}\right. \tag{3}
\end{align*}
$$

So total work is

$$
\begin{align*}
& O\left(n^{\log _{b}(a)-\epsilon}\right)+O\left(n^{\log _{b}(a)-\epsilon} b^{\epsilon}\right)+O\left(n^{\log _{b}(a)-\epsilon} b^{2 \epsilon}+\ldots+O\left(n^{\log _{b}(a)-\epsilon} b^{\log _{b}(n)(4)}\right.\right. \\
= & O\left(n^{\log _{b}(a)-\epsilon} n^{\epsilon}\right) \tag{5}\\
= & O\left(n^{\log _{b}(a)}\right) \tag{6}
\end{align*}
$$

2. Root node dominates. Implies that each level does order of magnitude less work than level below it. NOTE: third case from class
Let $f=O\left(n^{\log _{b}(a)+\epsilon}\right)$.
Work at level i is:

$$
\begin{align*}
& a^{i} O\left(n^{\log _{b}(a)+\epsilon} b^{-i \log _{b}(a)-i \epsilon}\right. \tag{7}\\
= & O\left(n^{\log _{b}(a)+\epsilon} b^{-i \epsilon}\right) \tag{8}
\end{align*}
$$

Total work is

$$
O\left(n^{\log _{b}(a)+\epsilon}\right)+O\left(n^{\log _{b}(a)+\epsilon} b^{-\epsilon}\right)+\ldots+O\left(n^{\log _{b}(a)}\right)=O\left(n^{\log _{b}(a)+\epsilon}\right)=f((\Leftrightarrow)
$$

3. What if $f(n)=O\left(n^{\log _{b}(a)} \log ^{k}(n)\right)$?

Why $\log ^{k}(n)$? Because a \log is the largest order of magnitude function that cannot be expressed as n^{ϵ} and we've covered that case.
At level i work

$$
\begin{align*}
& =a^{i} O\left(n^{\log _{b}(a)} b^{-i \log _{b}(a)} \log ^{k}\left(n / b^{i}\right)\right) \tag{10}\\
& =O\left(n^{\log _{b}(a)} \log ^{k}\left(n / b^{i}\right)\right) \tag{11}
\end{align*}
$$

Total work:

$$
\begin{align*}
& =O\left(n^{\log _{b}(a)} \log ^{k}(n)\right)+O\left(n^{\log _{b}(a)} \log ^{k}(n / b)\right)+\ldots+O\left(n^{\log _{b}(a)}\right)(12 \tag{12}\\
& =O\left(\text { treeheight } \cdot n^{\log _{b}(a)} \log ^{k}(n)\right) \tag{13}\\
& =O\left(\log _{b}(n) n^{\log _{b}(a)} \log ^{k}(n)\right) \tag{14}\\
& =O\left(n^{\log _{b}(a)} \log ^{k+1}(n)\right) \tag{15}\\
& =\log (n) f(n) \tag{16}
\end{align*}
$$

NOTE: Changing bases in a log is just multiplying by a constant: $\log _{b}(x)=$ $\log _{c}(x) / \log _{c}(b)$

EXAMPLES:

- MergeSort:
$T(n)=2 T(n / 2)+O(n)$
$a=2, b=2, n^{\log _{b}(a)}=n$ Case $f(n)=O\left(n^{\log _{b}(a)}\right)$. Work is $n \log n$.
- $T(n)=8 T(n / 2)+O\left(n^{2}\right)$
$a=8, b=2, n^{\log _{b}(a)}=n^{3}$ Case $f(n)<O\left(n^{\log _{b}(a)}\right)$. Work is n^{3}.
- $T(n)=3 T(n / 2)+n \log n$ Case $f(n)>O\left(n^{\log _{b}(a)}\right)$. Work is $n \log n$.
- $2^{n} T(n / 2)+n^{n}$ can't be solved. a is not constant!
- $0.5 T(n / 2)+n$ doesn't have a recursion.

5 Universal Hashing

Definition: A family of hash functions $H=\left\{h_{0}, h_{1}, \ldots\right\}$ is universal if, for a randomly chosen pair of keys $k, l \in U$ and randomly chosen hash function $h \in H$, the probability that $h(k)=h(l)$ is not more than $1 / m$ where m is the size of the hash table.

This is useful because if you pick a hash function from H when your program begins in such a way that an adversary cannot know in advance which function you will pick, the adversary cannot in advance guess two keys that will map to the same value.

Example: The family of hash functions

$$
\begin{equation*}
h_{a, b}(x)=((a x+b) \bmod p) \bmod m \tag{17}
\end{equation*}
$$

where $0<a<p, b<p, m<p$, and $|U|<p$ for prime p is universal.

Proof: Consider $k, l \in U$ with $k \neq l$. For a given $h_{a, b}$ let

$$
\begin{array}{r}
r=(a k+b) \bmod p \\
s=(a l+b) \bmod p \tag{19}
\end{array}
$$

Note that $r \neq s$ since

$$
\begin{equation*}
r-s \equiv a(k-l) \bmod p \tag{20}
\end{equation*}
$$

cannot be zero since $0<a<p, k<p$, and $l<p$ so $a(k-l)$ cannot be a multiple of p.

Now consider

$$
\begin{align*}
a & =\left((r-s)\left((k-l)^{-1} \bmod p\right)\right) \bmod p \tag{21}\\
b & =(r-a k) \bmod p \tag{22}
\end{align*}
$$

Now since $r \neq s$, there are only $p(p-1)$ possible pairs (r, s). Similarly, since we require $a \neq 0$, there are only $p(p-1)$ pairs (a, b). Equations 21 and 22 give a one-to-one map between pairs (r, s) and pairs (a, b). Therefore, each choice of (a, b) must produce a different (r, s) pair. If we pick (a, b) uniformly, at random then (r, s) is also distributed uniformly at random.
The probability that two keys k and l with $k \neq l$ have the same hash value is the probability that $r \equiv s \bmod m$. Therefore, we must have that

$$
\begin{equation*}
r-s \in\{m, 2 m, \ldots, q m\} \tag{23}
\end{equation*}
$$

where $q m<p$. This gives us at most $\lceil p / m\rceil-1 \leq(p-1) / m$ possible values for s such that s can collide with r. Since the pairs are distributed at random, and $s \neq r$, we have $p-1$ values for s that are all equally probable. Thus

$$
\begin{align*}
& \operatorname{Pr}[s \equiv r \bmod m]=\frac{p-1 / m}{p-1}=\frac{1}{m} \tag{24}\\
\Rightarrow & \operatorname{Pr}[h(k)=h(l)]=\frac{1}{m} \tag{25}
\end{align*}
$$

This proof was taken from CLRS Section 11.3.3.

