1 Overview

Rolling Hash

Sorting

Master Theorem

Universal Hashing

2 Rolling Hash

Idea: Hash functions can be related!

Example: Hashing strings “the” and “her”

Converting to numbers:

“the” = (t-(26)%+ h - (26) +e)

“her” = (h-(26)? + - (26) +r) = 26(“the”—t) +r

In general: Converting to base-b numbers using:

N(S) = SobE + 1oLt + Sobl=2 + .+ Sy _1b+ 5L,
Given S and S’ = Sp.p, and S = Sp.p4M4n

N(S") =M+ (N(S') = b5 "N (Sh.)) + N (ST i1:tgmsnr)
Mod properties:

ab mod m = ((a mod m)(b mod m)) mod m

(a +b) mod m = ((a mod m) + (b mod m)) mod m
hm(S) = N(S) mod m = ((((Sop mod m) (b mod m)) mod m)+...+Sz mod m) mod m

hm(S") = N(S") mod m
= (bM+7L(hm(Sl) - bL_nhm(S(l)n)) + hm(S/[/,+1;L+M)) mOd m

Just store division hash!
One character move:
(b(hm(Sl) - bL_lhm(S(I))) + hm(SZJrl)) mod m

Constant time hash calculation!

Can be used for string matching (Rabin-Karp):

Given string S and text T

e Compute h,,(S5)
e Compute hash for each string of length L in T’

e If hash = h,,(S), compare strings character-by-character O(L)

Time: O(|S]+ |T| = [S] + [S]e) = O(|T] + [S]¢)

Using signatures, ¢ is 1/|T].

3 Sorting

Idea: Given list of numbers, sort them from smallest to largest.

Algorithms: INSERTION SORT (ONLY IF NECESSARY)

DIAGRAM.

LOOP PROPERTY: At iteration j, we have an array of j — 1 sorted elements.

We put the jth element of the original list into the array in the correct place,
creating an array of j sorted elements.

SPACE: O(n) This can be done in place.
TIME: O(n?)
EXAMPLE:

1.9,8,7,6,5
2.8,9,76,5
3.7,8,9,6,5
4.6,7,8,9

5. 5,6,7,8,9

At each step j you must look through j — 1 elements:

Y50 d = (n=1)(n—2)/2=0(n?)
MERGE SORT

1. One element, done

2. Merge-Sort(A[l : n/2])

3. Merge-Sort(A[n/2+ 1 : n])
4

. Merge two arrays

Two-Finger Algorithm (If necessary ONLY)

Idea: One finger in each list. Advance finger on smaller element.
Example:

12

53

19 18

2125

123518192125

Time: O(n) since you only touch each element once

Space: If you create a new array each time nlogn but can be done in place
(complicated)

Best Case: O(n) if already sorted (yay good!)

4 Master Theorem

IDEA: Used to solve running time for recurrence relations. Like Merge Sort.
T(n) =2T(n/2) + O(n)

General form: T = aT'(n/b) + f(n)

DIAGRAM.

Height: log,(n)

Number of leaves: a8 (")

LOG PROPERTY:

alogs(n) — plogy(a)

logy(n) = logy (a'*%(") = log, (1) logy (a)

logy(z¥) = ylogy(x) because logy(x¥) is the number we must raise b to to get a¥
and bpvlosy(z) — 1y

alog, (n) — (aloga(m)bgb(a) — plogy(a)
What is the work done?

That depends on what the work per level looks like.

We KNOW we do O(f(n)) work and O(a'*#(™)) work. Question: Which domi-
nates?

CASES: SHOW IN DIAGRAM!!

1. Leaves dominate. Implies that each level does an order of magnitude less
work than the level below it. This is true when f(n) = O(n!°8(@)—¢):

Note: Clearly top level does order of magnitude less work than leaves.
At level i: a’ nodes do f(n/(b%)) work

aiO((n % b—i)logb(a)—e — aiO(nlogb(a)—eb—ilogb(a)+e) (1)
aio(nlogb(a)febie/ai) (2)
O(nlogb(a)—ebis (3)

So total work is

O(nlogb(a)—e) + O(nlogb(a)—ebe) + O(nlogb(a)—ebZe 4o+ O<nlogb(a)—sblogb(n()4)
_ O(nlogb(a)—ene) (5)
O(nlogb(a)) (6)

2. Root node dominates. Implies that each level does order of magnitude
less work than level below it. NOTE: third case from class

Let f = O(n'ogv(a)+<),
Work at level i is:

aiO(nlogb(a)+eb—ilogb(a)—ie (7)
_ O(nlOgb(a)+€b7ie) (8)
Total work is
O(nIOgb(a)+5) 4 O(nIOgb(a)+5b—€) 4+t O(nl’ng(a)) = O(nIOgb(a)‘i‘E) = f((@)

3. What if f(n) = O(n'°8(®) log*(n))?

Why logk (n)? Because a log is the largest order of magnitude function
that cannot be expressed as n® and we’ve covered that case.

At level i work
= O logh () (10
O(nlOgb(a) 1ogk(n/bi)) (11)

Total work:

= OB logh (n)) + O[5 log* (/b)) + ..+ O Y12
= O(treeheight - n'°%(¥) log® (n)) (13

)

)

= O(logy(n)n"= @ log" (n)) (14)

= O(n'=@log"*!(n)) (15)

log(n) f(n) (16)

NOTE: Changing bases in a log is just multiplying by a constant: log,(z) =
log.(x)/log.(b)

EXAMPLES:

e MergeSort:
T(n) =2T(n/2) + O(n)
a=2,b=2n") =p Case f(n) = O(n'&(®)). Work is nlogn.

e T(n) =8T(n/2) + O(n?)
a=8,b=2,n") =n3 Case f(n) < O(n'°&(®). Work is n>.

e T(n) =3T(n/2) +nlogn Case f(n) > O(n'°8(®). Work is nlogn.

e 2"T(n/2) +n™ can’t be solved. a is not constant!

0.5T(n/2) + n doesn’t have a recursion.

5 Universal Hashing

Definition: A family of hash functions H = {hg, h1, ...} is universal if, for
a randomly chosen pair of keys k,l € U and randomly chosen hash function
h € H, the probability that h(k) = h(l) is not more than 1/m where m is the
size of the hash table.

This is useful because if you pick a hash function from H when your program
begins in such a way that an adversary cannot know in advance which function
you will pick, the adversary cannot in advance guess two keys that will map to
the same value.

Example: The family of hash functions
hap(z) = ((az + b) mod p) mod m (17)

where 0 < a < p, b <p, m < p, and |U| < p for prime p is universal.

Proof: Consider k,l € U with k # [. For a given hg, let

r = (ak + b) mod p (18)

s = (al +b) mod p (19)
Note that r # s since

r—s=a(k—1) mod p (20)

cannot be zero since 0 < a < p, k < p, and I < p so a(k—1) cannot be a multiple
of p.

Now consider

= ((r—$)((k = 1)~ mod p)) mod p (21)
b = (r—ak)mod p. (22)

Now since r # s, there are only p(p — 1) possible pairs (r, s). Similarly, since we
require a # 0, there are only p(p — 1) pairs (a,b). Equations 21 and 22 give a
one-to-one map between pairs (r,s) and pairs (a,b). Therefore, each choice of
(a,b) must produce a different (r, s) pair. If we pick (a, b) uniformly, at random
then (r,s) is also distributed uniformly at random.

The probability that two keys k and [with k # [have the same hash value is
the probability that » = s mod m. Therefore, we must have that

r—sée{m,2m,...,qgm} (23)

where gm < p. This gives us at most [p/m] —1 < (p—1)/m possible values for
s such that s can collide with r. Since the pairs are distributed at random, and
s # r, we have p — 1 values for s that are all equally probable. Thus

p—1/m 1

Pr[s= dm|=—"—=— 24
r[s = r mod m] P ~ (24)
1
= Pr[h(k) =h()]=— (25)
m
This proof was taken from CLRS Section 11.3.3.

