Lecture 24 NP-completeness 6.006 Fall 2009

Lecture 24: NP-completeness

Lecture Overview

e Decision vs Search vs Optimization Problems
e P and NP
e Reductions between problems

e NP-Complete Problems

Readings
CLRS 34

Decision Problems vs Search Problems vs Optimization Problems

A decision problem asks us to check if something is true. E.g. Is there a simple path of
length at most some given bound B from a given node s of a graph G to another node 7
Possible answers: {‘yes’, ‘no’}.

A search problem asks us to find a solution with certain properties if such a solution exists.
E.g. Find a path from a given node s of G to another node ¢ with length at most some given
bound B if such a path exists. Possible answers: {paths of length at most B}U{‘no path of
length at most B exists between s and t’}.

A optimization problem asks us to find among all solutions the one with the best performance
in some metric. E.g. Find the shortest path from a given node s of G to another node ¢ if
any path exists. Possible answers: {shortest paths from s to ¢}U{‘no path between s and ¢
exists’}.

Clearly, the decision version of the shortest paths problem defined above is not harder than
the search version, since an algorithm solving the latter problem can solve the former. The
opposite direction is not always clear, since certifying that a solution exists may not always
give us that solution. But this is a philosophical discussion beyond this course. ..

And what about the optimization versus the search version of the problem? These
are essentially equivalent since we can do binary search on the possible path lengths B to
reduce the optimization version to the search version. On the other hand, reducing the
search version to the optimization one is straightforward.

We focus on search problems for the remaining of this lecture.

Lecture 24 NP-completeness 6.006 Fall 2009

Search problems, a bit more formally

What makes up a search problem? A search problem P is defined by:

e a set Zp of valid instances, or inputs to the problem;
e an algorithm Ap, which, given z € Zp and a proposed solution y to x, checks if y is a
valid solution to x, i.e. a solution satisfying the desired properties.

E.g., for the shortest path problem (SPP)
e Zgpp := { weighted graph G + pair of vertices s and ¢ + bound B};

e Agspp checks if y is a path on G from s to ¢ whose length does not exceed B.

The Class NP

NP is the class, i.e. the set, of all search problems P satisfying the following properties

1. for all (valid) instances = € Zp, there exists a solution y to z whose description has

size polynomial in z, if a solution exists at all;

2. algorithm Ap runs in time polynomial in |z| and |y|.

NP stands for “non-deterministic polynomial time”. The use of non-determinism in the name
of NP conveys the meaning that a non-deterministic algorithm (i.e. an algorithm that is
allowed to toss random coins in its execution) could guess a random sting y and invoke Ap
to check if the guessed string ¥ is a valid solution to x. From property 2 above, if there is
a solution to x there has to be one of size at most polynomial in x. Hence, the probability
of success of the algorithm would be at least inverse exponential. Alas, in general it may be
no larger than inverse exponential, which is far from being practical. ..

The Class P

P is the class of all search problems in NP that can be solved in polynomial time.

The P versus NP Question

Clearly, P C NP (by definition). But the answer to whether P contains NP is not known
yet. Many researchers believe that P £ NP, i.e. P C NP, but showing this seems to be
beyond present mathematics. In fact, the ‘P versus NP’ question is in the list of the seven
Millennium Prize Problems of the Clay Mathematical Institute. Presently six of the initial
seven problems (given in 2000) remain unsolved with a prize of $1,000,000 accompanying
each.

The following table discusses a few examples of problems in P and NP that we have encoun-

tered in this class.

Lecture 24 NP-completeness 6.006 Fall 2009

Figure 1: P C NP

Problem: in NP? in P?

short path yes yes
(i.e. find a path of length at

most B between s and t)

long path yes unknown
(i.e. find a path of length at

least B between s and t)

common Subsequence yes yes
(i.e. find a common subsequence of two

strings of length at least ¢)

vertex cover yes yes in trees, unknown in general graphs
(i.e. find a set of vertices of size at most k such

that every edge is adjacent to the set)

dominating set yes yes in trees, unknown in general graphs
(i.e. find a set of vertices of size at most k such

that every vertex is in or adjacent to the set)

Reductions Between Problems

A reduction from problem A to problem B is a construction showing that an algorithm for
problem B is sufficient for solving problem A. It consists of two functions f and g. f maps
instances of A to instances of B, while g maps solutions of B to solutions of A. These func-
tions need to satisfy the following properties.

If x is an instance of problem A, then f(x) is an instance of problem B such that

e if y is a solution to f(z), then g(y) is a solution to z;

e if there is no solution to f(z), then there is no solution to x either.

Lecture 24 NP-completeness 6.006 Fall 2009

See Figure [2] for how to use functions f and g to produce an algorithm for problem A given

an algorithm for problem B.

algorithm for A

solution y solutidn g(y)
of f(x) P oflz
> f > algorithm for B © ©
instance|z instance f(x) > >
of A of B no solution no solution
to f(x) to x

Figure 2: Reduction from search problem A to search problem B

e.g. Vertex Cover — Dominating Set.

How do we turn an algorithm for DS into an algorithm for VC?

Description of f: Given a graph G, convert every edge of GG into a triangle by introducing
a dummy vertex per edge, as in Figure [3| Let G* := f(G).

Description of g: Given a DS y for G* of size at most k obtain a VC g(y) of G of size at

most k as follows: if a dummy vertex is used in y, then use either of its neighboring vertices
in g(y); if a non-dummy vertex is used in y, use that vertex also in g(y

f

25
e

Figure 3: Reduction from Vertex Cover to Dominating Set

Lecture 24 NP-completeness 6.006 Fall 2009

The Class of NP-Complete Problems

A search problem P is an NP-complete problem if
1. P belongs to NP;
2. there is a reduction from every problem in NP to the problem P.

One of the most important theorems in the development of computer science is the following
theorem due to Cook, Karp and Levin.

Theorem|[Cook-Karp-Levin|: Vertex Cover is NP-complete.

As a corollary of this theorem it follows that dominating set is also NP-complete (since VC
reduces to it), and so are many other problems, e.g., the Knapsack problem, the longest
path problem, etc.

The class of NP-complete problems captures the hardest problems inside NP. For many of
these problems researchers have been trying unsuccessfully to develop efficient algorithms for
decades. This suggests that NP-complete problems are probably not solvable in polynomial
time, and most computer scientist share this view (see Figure [4)). However, while the P
vs NP question remains unanswered, there is no formal proof that NP-complete problems
outside of P really exist.

Figure 4: The complexity world, as most computer scientists expect it to be.

