Lecture 22: Numerics I

Lecture Overview

- Irrationals
- Newton's Method $(\sqrt{(a)}, 1/b)$
- High precision multiply \leftarrow
- Next time
	- High precision radix conversion (printing)
	- $-$ High precision division

Irrationals:

Pythagoras discovered that a square's diagonal and its side are incommensurable, i.e., could not be expressed as a ratio - he called the ratio "speechless"!

Figure 1: Ratio of a Square's Diagonal to its Sides.

Pythagoras worshipped numbers "All is number" Irrationals were a threat!

Motivating Question: Are there hidden patterns in irrationals? Can you see a pattern?

√ $2 = 1.414213562373095$ 048 801 688 724 209 698 078 569 671 875

Digression

Catalan numbers:

Set P of balanced parentheses strings are recursively defined as

- $\lambda \in P$ (λ is empty string)
- If $\alpha, \beta \in P$, then $(\alpha)\beta \in P$

Every nonempty balanced paren string can be obtained via Rule 2 from a unique α, β pair. For example, $\left(\binom{n}{2}\right)\left(\binom{n}{2}\right)$ obtained by $\left(\binom{n}{2}\right)$) ()()

 γ_{β}

Enumeration

 C_n : number of balanced parentheses strings with exactly n pairs of parentheses $C_0 = 1$ empty string

 ${\alpha}$

 C_{n+1} ? Every string with $n+1$ pairs of parentheses can be obtained in a unique way via rule 2.

One paren pair comes explicitly from the rule. k pairs from α , $n - k$ pairs from β

$$
C_{n+1} = \sum_{k=0}^{n} C_k \cdot C_{n-k} \quad n \ge 0
$$

\n
$$
C_0 = 1 \quad C_1 = C_0^2 = 1 \quad C_2 = C_0 C_1 + C_1 C_0 = 2 \quad C_3 = \dots = 5
$$

\n1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796,
\n58786, 208012, 742900, 2674440, 9694845,
\n35357670, 129644790, 477638700, 1767263190,
\n6564120420, 24466267020, 91482563640,
\n343059613650, 1289904147324, 4861946401452, ...

Geometry Problem

Figure 2: Geometry Problem.

 $BD=1$ What is AD?

$$
AD = AC - CD = 500,000,000,000 - \underbrace{\sqrt{500,000,000,000^2 - 1}}_{a}
$$

Let's calculate AD to a million places!

Newton's Method

Find root of $f(x) = 0$ through successive approximation e.g., $f(x) = x^2 - a$

Figure 3: Newton's Method.

Tangent at $(x_i, f(x_i))$ is line $y = f(x_i) + f'(x_i) \cdot (x - x_i)$ where $f'(x_i)$ is the derivative. $x_{i+1} =$ intercept on x-axis

$$
x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}
$$

Square Roots

$$
f(x) = x2 - a
$$

$$
\chi_{i+1} = \chi_i - \frac{(\chi_i^{2} - a)}{2\chi_i} = \frac{\chi_i + \frac{a}{\chi_i}}{2}
$$

Example

$$
\chi_0 = 1.000000000 \qquad a = 2
$$

\n
$$
\chi_1 = 1.500000000
$$

\n
$$
\chi_2 = 1.416666666
$$

\n
$$
\chi_3 = 1.414215686
$$

\n
$$
\chi_4 = 1.414213562
$$

Quadratic convergence, \sharp digits doubles

High Precision Computation

√ 2 to d-digit precision: 1.414213562373 d digits · · · Want integer $|10^d\sqrt{2}| = |\sqrt{2 \cdot 10^{2d}}|$ - integral part of square root √ √ Can still use Newton's Method. Can still use ivewton's method.
Let's try it on $\sqrt{2}$, and our segment AD! See anything interesting?

High Precision Multiplication

Multiplying two *n*-digit numbers (radix $r = 2, 10$) $0 \leq x, y < r^n$

$$
x = x_1 \cdot r^{n/2} + x_0 \qquad x_1 = \text{high half}
$$

\n
$$
y = y_1 \cdot r^{n/2} + y_0 \qquad x_0 = \text{low half}
$$

\n
$$
0 \le x_0, x_1 < r^{n/2}
$$

\n
$$
0 \le y_0, y_1 < r^{n/2}
$$

\n
$$
z = x \cdot y = x_1 y_1 \cdot r^n + (x_0 \cdot y_1 + x_1 \cdot y_0) r^{n/2} + x_0 \cdot y_0
$$

4 multiplications of half-sized \sharp 's \implies quadratic algorithm $\theta(n^2)$ time

Karatsuba's Method

Figure 4: Branching Factors.

Let

$$
z_0 = \frac{x_0 \cdot y_0}{x_2}
$$

\n
$$
z_2 = x_2 \cdot y_2
$$

\n
$$
z_1 = (x_0 + x_1) \cdot (y_0 + y_1) - z_0 - z_2
$$

\n
$$
= x_0 y_1 + x_1 y_0
$$

\n
$$
z = z_2 \cdot r^n + z \cdot r^{n/2} + z_0
$$

There are three multiplies in the above calculations.

$$
T(n) = \text{time to multiply two } n\text{-digit#'}s
$$

=
$$
3T(n/2) + \theta(n)
$$

=
$$
\theta\left(n^{\log_2 3}\right) = \theta\left(n^{1.5849625\cdots}\right)
$$

Better than $\theta(n^2)$. Python does this.