Lecture 19 Dynamic Programming II of IV 6.006 Fall 2009

Lecture 19: Dynamic Programming II: Shortest
Paths, Longest Common Subsequence, Parent
Pointers

Lecture Overview

e Review of big ideas & Examples
e Shortest Paths

e Bottom-up implementation

e Longest common subsequence

e Parent pointers for guesses

Quiz 2: Wednesday Nov 18, 2009 in room 34-101 from 7:30 pm - 9:30 pm.

Readings
CLRS 15

DP Review

* DP = “controlled brute force”
* DP =~ recursion 4+ memoization

* DP = dividing into reasonable § subproblems whose solutions relate - acyclicly - usually
via guessing parts of solution.

* time =~ f subproblems X time/subproblem

~ f subproblems x f# guesses per subproblem x overhead.

e cssentially an amortization

e count each subproblem only once; after first time, costs O(1) via memoization

The table below shows the examples from last lecture.

Lecture 19 Dynamic Programming II of IV 6.006 Fall 2009

Examples: Fibonacci Crazy Eights
subprobs: fib(k) trick(i) = longest
0<k<n trick starting at card(i)
f subprobs: O(n) O(n)
guessing: none next card j
f choices: 1 n—1
relation: = fib(k — 1) = 1 + max(trick(j))
+ fib(k — 2) fori <j<nif
match(c[i], c[4])
time/subpr: O(n) O(n —1)
DP time: O(n?) O(n?)
orig. prob: fib(n) max{trick(i), 0 <1i < n}
extra time: O(1) O(n)

Shortest Paths to a given destination ¢
Recursive formulation:

e for all nodes v:
0(v,t) = min{w(v,u) + §(u, t) ’(v, u)e B} (1)

e does this work with memoization?
no: cycles = infinite loops. In Figure [4}

O(vi,t) =1+ 0(va,t) =2+ 6(v3,t) =3+ 6(v1,t) =4+ §(ve,t) = ...
®

Figure 1: Shortest Paths

Remedy?
A better definition:

0k (v,t) = length of shortest path from v to ¢ using < k edges

New Recursion:

Lecture 19 Dynamic Programming II of IV 6.006 Fall 2009

L4 5k(t, t) = 0;
e 0p(v,t) = 400, for v # t;
e for all other pairs of values v, k:
8(v, t) = min {{5,H(v, 1)} U {w(v,) + 651 (u,) ’(v, w) eE}} 2)
Shortest path? Assuming no negative cycles: 6(v,t) = 6,—1(v,t) for all v
Runtime

o Naive analysis: there are O(V') values for k, O(V') values for v, and every application
of takes time O(V') in the worst case since there are O(V') guesses for u; hence
the overall time is O(V3).

o Clever analysis: For each value of k, each edge is “explored” once. Since there are
O(V') possible values of k, overall time is O(VE).

Examples: Fibonacci Shortest Paths Crazy Eights
subprobs: fib(k) Ok (v, t)Vu, k <n trick(i) = longest
0<k<n = min path v — ¢ trick from card(i)
using < k edges
subprobs: O(n) 0(V?) O(n)
guessing: none edge from v, if any next card j
choices: 1 deg(v) n—i
relation: = fib(k — 1) = min{dx_1(v,t)} = 1 + max(trick(j))
+ fib(k —2) U{w(v,u) + 6p—1(u,t) fori<j<mnif
| uw € Adj[v]} match(c[i], c[4])
time/subpr: O(n) O(1+ £)—on average O(n —1)
DP time: 0(n?) O(V2+VE) O(n?)
orig. prob: fib(n) On—1(v,t),Yo max{trick(i), 0 <7 < n}
extra time: O(1) O(1) ©(n)

Lecture 19 Dynamic Programming II of IV 6.006 Fall 2009

Bottom-up implementation of DP:

So far: Recursion + Memoization

Alternative to recursion
e subproblem dependencies form DAG (see Figure [2)
e imagine topological sorting the dependency graph

e iterate through subproblems in that order
—> when solving a subproblem, have already solved all dependencies

e often: “solve smaller subproblems first”

RN
A

(BB () (8)
Figure 3: Subproblem Dependency Graph for Fibonacci Numbers.

Example.

Fibonacci:

for k in range(n + 1): fib[k] = ---
Shortest Paths:

for k in range(n): for vin V : dlk,v,t] = - --
Crazy Eights:

for 7 in reversed(range(n)): trick[i] = ---

e no recursion for memoized subproblems
— faster in practice

e building DP table of solutions to all subprobs. can often optimize space:

— Shortest Paths: re-use same table Vk

Lecture 19 Dynamic Programming II of IV 6.006 Fall 2009

Longest common subsequence: (LCS)

(a.k.a. edit distance, diff, CVS/SVN, spellchecking, DNA comparison, plagiarism detection,

etc.)

INPUT: two strings/sequences x & y

QUESTION: the longest common subsequence of z and y, denoted LCS(x,y)

(sequential but not necessarily contiguous)

eg, HIEROGLYPHOLO GYvs MICHAELANGELO
common subsequence is HELLO

equivalent to “edit distance” (unit costs): minimum f§ character insertions/deletions
to transform x — y

brute force: try all 21l subsequences of x; for each of them scan y to see if that
subsequence exists in y = ©(2/%l-|y|) time, where || and |y| represent the lengths
of x and y respectively.

instead: DP on two sequences simultaneously

LCS DP

Subproblem Definition:

clij) = LCS(ali ,ylj), for 0 <45 <,

where z[i,:] (resp. y[j,:]) is the suffix of = (resp. y) starting at position ¢ (resp. j).

©(n?) subproblems

original problem = ¢[0, 0]

Recursion: Forget about the original problem and focus on finding the LCS of z[i ‘]
and y[j :]. Look at the first positions of these sequences and distinguish the following
cases:

— if z[i] = y[j], then “match” z[i] and y[j] and combine this with the longest
common subsequence of z[i + 1 :] and y[j + 1 :];

— if z[i] # y[j], then it must be that x[i] or y[j] or both are NOT used in the longest
common subsequence of z[i :] and y[j :]—GUESS WHICH ONE TO DROP

Hence, the recursive formula is the following:

Lecture 19 Dynamic Programming II of IV 6.006 Fall 2009

if zi] = ylj] 1 cli,j] =14 ¢cli+ 1,5+ 1]
else: c[i,j] = max{c[i + 1, j],cli,j + 1]}

z[ijout y[j]out
base cases: c[|z|,j] = c[i,|y|] = 0

e O(1) time per subproblem == ©O(n?) total time for DP.

e DP table: See Figure [for subproblem dependency structure:

0 yl
0 0
0
0

| ,I, if w[i] # ylj]
0
0 0 0 0 0

Figure 4: DP Table.

e recursive DP: implement the recursive formula for c[-, -] given above, memoizing all
intermediated results

def LCS(z,y):
seen = { }
def ¢[i, j]:
if i > len(xz)orj > len(y) : return ()
if (7,7) not in seen:
i 2li] == ylj]
seen[i,jl =1+cli+1,j + 1]
else:
seen(i, j] = max(c[i + 1, 7], c[i, j + 1])
return seenli, j|
return ¢(0, 0)

e bottom-up DP: fill in the table ¢[-, -] in a “bottom-up” fashion, that is paying attention
to the dependency structure shown in Figure [4

Lecture 19 Dynamic Programming II of IV 6.006 Fall 2009

def LCS(z, y):
c={}

for i in range(len(x)):
cli, len(y)] =0

for j in range(len(y)):
cllen(z), j] = 0

for ¢ in reversed(range(len(z))):
for j in reversed(range(len(y))):

if z[i] == y[j]:
cli,jl=14c[i+ 1,5 +1]
else:

cli, j] = max(cli + 1, j], cli, j +1])
return c[(), 0]

Recovering LCS: [material covered in recitation and discussed also in
the next lecture]

e to get the LCS, not just its length, store parent pointers (like shortest paths) to
remember correct choices for guesses:

if 2] = ylj]
cfi,j] =1+cli+1,5+1]
parent[i, j| = (i + 1,7 + 1)
else:
if efi +1,7] > ¢[i, j + 1]
cli, j] = cli + 1,]
parent[i, j] = (i + 1, j)
else:
cli, gl = cft,j + 1]
parent[i, j] = (i,7 + 1)

e ...and follow them at the end:

les =[]
here = (0,0)
while c[here]:
if x[i] == y[j:
les.append(x[i])
here = parent|here]

