Lecture 19: Dynamic Programming II: Shortest Paths, Longest Common Subsequence, Parent Pointers

Lecture Overview

- Review of big ideas & Examples
- Shortest Paths
- Bottom-up implementation
- Longest common subsequence
- Parent pointers for guesses

Quiz 2: Wednesday Nov 18, 2009 in room 34-101 from 7:30 pm - 9:30 pm.

Readings

CLRS 15

DP Review

- * DP \approx "controlled brute force"
- * DP \approx recursion + memoization
- * DP \approx dividing into reasonable \sharp subproblems whose solutions relate acyclicly usually via guessing parts of solution.

* time $\approx \sharp$ subproblems \times time/subproblem

 \approx \$\propto subproblems \times \$\propto guesses per subproblem \times overhead.

- essentially an amortization
- count each subproblem only once; after first time, costs O(1) via memoization

The table below shows the examples from last lecture.

Examples:	Fibonacci	Crazy Eights
subprobs:	$\operatorname{fib}(k)$	trick(i) = longest
	$0 \leq k \leq n$	trick starting at card(i)
# subprobs:	$\Theta(n)$	$\Theta(n)$
guessing:	none	next card j
# choices:	1	n-i
relation:	$= \operatorname{fib}(k-1)$	$= 1 + \max(\operatorname{trick}(j))$
	$+ \operatorname{fib}(k-2)$	for $i < j < n$ if
		$\operatorname{match}(c[i], c[j])$
time/subpr:	$\Theta(n)$	$\Theta(n-i)$
DP time:	$\Theta(n^2)$	$\Theta(n^2)$
orig. prob:	$\operatorname{fib}(n)$	$\max\{\operatorname{trick}(i), \ 0 \le i < n\}$
extra time:	$\Theta(1)$	$\Theta(n)$

Shortest Paths to a given destination t

Recursive formulation:

• for all nodes v:

$$\delta(v,t) = \min\{w(v,u) + \delta(u,t) \, | \, (v,u) \, \epsilon \, E\}$$
(1)

does this work with memoization?
 no: cycles ⇒ infinite loops. In Figure 4:

$$\delta(v_1, t) = 1 + \delta(v_2, t) = 2 + \delta(v_3, t) = 3 + \delta(v_1, t) = 4 + \delta(v_2, t) = \dots$$

Figure 1: Shortest Paths

Remedy?

A better definition:

 $\delta_k(v,t) = \text{length of shortest path from } v \text{ to } t \text{ using } \leq k \text{ edges}$

New Recursion:

- $\delta_k(t,t) = 0;$
- $\delta_0(v,t) = +\infty$, for $v \neq t$;
- for all other pairs of values v, k:

$$\delta_k(v,t) = \min\left\{ \{\delta_{k-1}(v,t)\} \cup \{w(v,u) + \delta_{k-1}(u,t) \, \Big| \, (v,u) \, \epsilon \, E\} \right\}$$
(2)

Shortest path? Assuming no negative cycles: $\delta(v, t) = \delta_{n-1}(v, t)$ for all v

Runtime

- Naive analysis: there are O(V) values for k, O(V) values for v, and every application of (2) takes time O(V) in the worst case since there are O(V) guesses for u; hence the overall time is $O(V^3)$.
- Clever analysis: For each value of k, each edge is "explored" once. Since there are O(V) possible values of k, overall time is O(VE).

Examples:	Fibonacci	Shortest Paths	Crazy Eights
subprobs:	$\operatorname{fib}(k)$	$\delta_k(v, t) \forall v, k < n$	trick(i) = longest
	$0 \leq k \leq n$	$= \min \text{ path } v \to t$	trick from card(i)
		using $\leq k$ edges	
\sharp subprobs:	$\Theta(n)$	$\Theta(V^2)$	$\Theta(n)$
guessing:	none	edge from v , if any	next card j
\ddagger choices:	1	$\deg(v)$	n-i
relation:	$= \operatorname{fib}(k-1)$	$= \min\{\delta_{k-1}(v,t)\}\$	$= 1 + \max(\operatorname{trick}(j))$
	$+ \operatorname{fib}(k-2)$	$\cup \{w(v,u) + \delta_{k-1}(u,t)$	for $i < j < n$ if
		$\mid u \in \mathrm{Adj}[v] \}$	$\mathrm{match}(c[i],c[j])$
time/subpr:	$\Theta(n)$	$\Theta(1+\frac{E}{V})$ —on average	$\Theta(n-i)$
<u>DP time:</u>	$\Theta(n^2)$	$\Theta(V^2 + VE)$	$\Theta(n^2)$
orig. prob:	$\operatorname{fib}(n)$	$\delta_{n-1}(v,t), \forall v$	$\max\{\operatorname{trick}(i), \ 0 \le i < n\}$
extra time:	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$

Bottom-up implementation of DP:

So far: Recursion + Memoization

Alternative to recursion

- subproblem dependencies form DAG (see Figure 2)
- imagine topological sorting the dependency graph
- iterate through subproblems in that order
 ⇒ when solving a subproblem, have already solved all dependencies
- often: "solve smaller subproblems first"

Figure 2: DAG.

Figure 3: Subproblem Dependency Graph for Fibonacci Numbers.

Example.

Fibonacci:
for k in range
$$(n + 1)$$
: fib $[k] = \cdots$
Shortest Paths:
for k in range (n) : for v in V : $d[k, v, t] = \cdots$
Crazy Eights:
for i in reversed(range (n)): trick $[i] = \cdots$

- no recursion for memoized subproblems
 - \implies faster in practice
- building <u>DP table</u> of solutions to all subprobs. can often optimize space:
 - Shortest Paths: re-use same table $\forall k$

Longest common subsequence: (LCS)

(a.k.a. edit distance, diff, CVS/SVN, spellchecking, DNA comparison, plagiarism detection, etc.)

INPUT: two strings/sequences x & y

QUESTION: the longest common subsequence of x and y, denoted LCS(x,y) (sequential but not necessarily contiguous)

- e.g., H I E R O G L Y P H O L O G Y vs. M I C H A E L A N G E L O common subsequence is HELLO
- equivalent to "edit distance" (unit costs): minimum \sharp character insertions/deletions to transform $x \to y \longrightarrow$ everything except the matches
- brute force: try all $2^{|x|}$ subsequences of x; for each of them scan y to see if that subsequence exists in $y \implies \Theta(2^{|x|} \cdot |y|)$ time, where |x| and |y| represent the lengths of x and y respectively.
- instead: DP on two sequences simultaneously

LCS DP

• Subproblem Definition:

 $c[i, j] = \text{LCS}(x[i:], y[j:]), \text{ for } 0 \le i, j < n,$

where x[i, :] (resp. y[j, :]) is the suffix of x (resp. y) starting at position i (resp. j).

- $\Theta(n^2)$ subproblems
- original problem $\approx c[0,0]$ (this gives the length; to find the sequence itself a little more book-keeping is needed)
- **Recursion:** Forget about the original problem and focus on finding the LCS of x[i:] and y[j:]. Look at the first positions of these sequences and distinguish the following cases:
 - if x[i] = y[j], then "match" x[i] and y[j] and combine this with the longest common subsequence of x[i+1:] and y[j+1:];
 - if $x[i] \neq y[j]$, then it must be that x[i] or y[j] or both are NOT used in the longest common subsequence of x[i:] and y[j:]—GUESS WHICH ONE TO DROP
- Hence, the **recursive formula** is the following:

if x[i] = y[j] : c[i, j] = 1 + c[i + 1, j + 1]else: $c[i, j] = \max\{\underbrace{c[i + 1, j]}_{x[i] \text{ out}}, \underbrace{c[i, j + 1]}_{y[j] \text{ out}}\}$ base cases: $c[|x|, j] = c[i, |y|] = \emptyset$

- $\Theta(1)$ time per subproblem $\implies \Theta(n^2)$ total time for DP.
- DP table: See Figure 4 for subproblem dependency structure:

Figure 4: DP Table.

• recursive DP: implement the recursive formula for $c[\cdot, \cdot]$ given above, memoizing all intermediated results

```
\begin{array}{l} \operatorname{def}\operatorname{LCS}(x,y) \colon\\ \operatorname{seen} = \left\{ \begin{array}{l} \right\}\\ \operatorname{def} c[i,j] \colon\\ & \operatorname{if} i \geq \operatorname{len}(x) \operatorname{or} j \geq \operatorname{len}(y) \colon \operatorname{return} \emptyset\\ & \operatorname{if} (i,j) \operatorname{not} \operatorname{in} \operatorname{seen} \colon\\ & \operatorname{if} x[i] == y[j] \colon\\ & \operatorname{seen}[i,j] = 1 + c[i+1,j+1]\\ & \operatorname{else} \colon\\ & \operatorname{seen}[i,j] = \max(c[i+1,j],c[i,j+1])\\ & \operatorname{return} \operatorname{seen}[i,j]\\ & \operatorname{return} c(\emptyset,\emptyset) \end{array}
```

• bottom-up DP: fill in the table $c[\cdot, \cdot]$ in a "bottom-up" fashion, that is paying attention to the dependency structure shown in Figure 4.

```
\begin{split} & \text{def LCS}(x,y):\\ & c = \{\}\\ & \text{for } i \text{ in range}(\text{len}(x)):\\ & c[i, \, \text{len}(y)] = \emptyset\\ & \text{for } j \text{ in range}(\text{len}(y)):\\ & c[\text{len}(x), j] = \emptyset\\ & \text{for } i \text{ in reversed}(\text{range}(\text{len}(x))):\\ & \text{for } j \text{ in reversed}(\text{range}(\text{len}(x))):\\ & \text{ for } j \text{ in reversed}(\text{range}(\text{len}(y))):\\ & \text{ if } x[i] == y[j]:\\ & c[i, j] = 1 + c[i + 1, j + 1]\\ & \text{ else:}\\ & c[i, j] = \max(c[i + 1, j], c[i, j + 1])\\ & \text{ return } c[\emptyset, \emptyset] \end{split}
```

Recovering LCS: [material covered in recitation and discussed also in the next lecture]

• to get the LCS, not just its length, store parent pointers (like shortest paths) to remember correct choices for guesses:

```
\begin{split} \text{if } x[i] &= y[j]:\\ c[i,j] &= 1 + c[i+1,j+1]\\ \text{parent}[i,j] &= (i+1,j+1)\\ \text{else:}\\ \text{if } c[i+1,j] &> c[i,j+1]:\\ c[i,j] &= c[i+1,j]\\ \text{parent}[i,j] &= (i+1,j)\\ \text{else:}\\ c[i,j] &= c[i,j+1]\\ \text{parent}[i,j] &= (i,j+1) \end{split}
```

• ... and follow them at the end:

```
\begin{aligned} &\text{lcs} = [ ] \\ &\text{here} = (\emptyset, \emptyset) \\ &\text{while c[here]:} \\ &\text{if } x[i] == y[j]: \\ &\text{lcs.append}(x[i]) \\ &\text{here} = \text{parent[here]} \end{aligned}
```