
Lecture 19 Dynamic Programming II of IV 6.006 Fall 2009

Lecture 19: Dynamic Programming II: Shortest

Paths, Longest Common Subsequence, Parent

Pointers

Lecture Overview

• Review of big ideas & Examples

• Shortest Paths

• Bottom-up implementation

• Longest common subsequence

• Parent pointers for guesses

Quiz 2: Wednesday Nov 18, 2009 in room 34-101 from 7:30 pm - 9:30 pm.

Readings

CLRS 15

DP Review

* DP ≈ “controlled brute force”

* DP ≈ recursion + memoization

* DP ≈ dividing into reasonable] subproblems whose solutions relate - acyclicly - usually
via guessing parts of solution.

* time ≈] subproblems × time/subproblem︸ ︷︷ ︸
≈] subproblems ×] guesses per subproblem × overhead.

• essentially an amortization

• count each subproblem only once; after first time, costs O(1) via memoization

The table below shows the examples from last lecture.

1

Lecture 19 Dynamic Programming II of IV 6.006 Fall 2009

Examples: Fibonacci Crazy Eights
subprobs: fib(k) trick(i) = longest

0 ≤ k ≤ n trick starting at card(i)

] subprobs: Θ(n) Θ(n)
guessing: none next card j

] choices: 1 n− i
relation: = fib(k − 1) = 1 + max(trick(j))

+ fib(k − 2) for i < j < n if
match(c[i], c[j])

time/subpr: Θ(n) Θ(n− i)
DP time: Θ(n2) Θ(n2)

orig. prob: fib(n) max{trick(i), 0 ≤ i < n}
extra time: Θ(1) Θ(n)

Shortest Paths to a given destination t

Recursive formulation:

• for all nodes v:

δ(v, t) = min{w(v, u) + δ(u, t)
∣∣∣(v, u) εE} (1)

• does this work with memoization?
no: cycles =⇒ infinite loops. In Figure 4:

δ(v1, t) = 1 + δ(v2, t) = 2 + δ(v3, t) = 3 + δ(v1, t) = 4 + δ(v2, t) = . . .

v1 v2

v3

t

Figure 1: Shortest Paths

Remedy?
A better definition:

δk(v, t) = length of shortest path from v to t using ≤ k edges

New Recursion:

2

Lecture 19 Dynamic Programming II of IV 6.006 Fall 2009

• δk(t, t) = 0;

• δ0(v, t) = +∞, for v 6= t;

• for all other pairs of values v, k:

δk(v, t) = min
{
{δk−1(v, t)} ∪ {w(v, u) + δk−1(u, t)

∣∣∣(v, u) εE}
}

(2)

Shortest path? Assuming no negative cycles: δ(v, t) = δn−1(v, t) for all v

Runtime

• Naive analysis: there are O(V) values for k, O(V) values for v, and every application
of (2) takes time O(V) in the worst case since there are O(V) guesses for u; hence
the overall time is O(V 3).

• Clever analysis: For each value of k, each edge is “explored” once. Since there are
O(V) possible values of k, overall time is O(V E).

Examples: Fibonacci Shortest Paths Crazy Eights
subprobs: fib(k) δk(v, t)∀v, k < n trick(i) = longest

0 ≤ k ≤ n = min path v → t trick from card(i)
using ≤ k edges

] subprobs: Θ(n) Θ(V 2) Θ(n)
guessing: none edge from v, if any next card j

] choices: 1 deg(v) n− i
relation: = fib(k − 1) = min{δk−1(v, t)} = 1 + max(trick(j))

+ fib(k − 2) ∪{w(v, u) + δk−1(u, t) for i < j < n if
| u ∈ Adj[v]} match(c[i], c[j])

time/subpr: Θ(n) Θ(1 + E
V)—on average Θ(n− i)

DP time: Θ(n2) Θ(V 2 + V E) Θ(n2)
orig. prob: fib(n) δn−1(v, t), ∀v max{trick(i), 0 ≤ i < n}
extra time: Θ(1) Θ(1) Θ(n)

3

Lecture 19 Dynamic Programming II of IV 6.006 Fall 2009

Bottom-up implementation of DP:

So far: Recursion + Memoization

Alternative to recursion

• subproblem dependencies form DAG (see Figure 2)

• imagine topological sorting the dependency graph

• iterate through subproblems in that order
=⇒ when solving a subproblem, have already solved all dependencies

• often: “solve smaller subproblems first”

Figure 2: DAG.

F0F1F2F3F4F5F6F7…

Figure 3: Subproblem Dependency Graph for Fibonacci Numbers.

Example.

Fibonacci:
for k in range(n+ 1): fib[k] = · · ·

Shortest Paths:
for k in range(n): for v in V : d[k, v, t] = · · ·

Crazy Eights:
for i in reversed(range(n)): trick[i] = · · ·

• no recursion for memoized subproblems
=⇒ faster in practice

• building DP table of solutions to all subprobs. can often optimize space:

– Shortest Paths: re-use same table ∀k

4

Lecture 19 Dynamic Programming II of IV 6.006 Fall 2009

Longest common subsequence: (LCS)

(a.k.a. edit distance, diff, CVS/SVN, spellchecking, DNA comparison, plagiarism detection,
etc.)

Input: two strings/sequences x & y

Question: the longest common subsequence of x and y, denoted LCS(x,y)
(sequential but not necessarily contiguous)

• e.g., H I E R O G L Y P H O L O G Y vs. M I C H A E L A N G E L O
common subsequence is HELLO

• equivalent to “edit distance” (unit costs): minimum] character insertions/deletions
to transform x→ y −→ everything except the matches

• brute force: try all 2|x| subsequences of x; for each of them scan y to see if that
subsequence exists in y =⇒ Θ(2|x| · |y|) time, where |x| and |y| represent the lengths
of x and y respectively.

• instead: DP on two sequences simultaneously

LCS DP

• Subproblem Definition:

c[i, j] = LCS(x[i :], y[j :]), for 0 ≤ i, j < n,

where x[i, :] (resp. y[j, :]) is the suffix of x (resp. y) starting at position i (resp. j).

• Θ(n2) subproblems

• original problem ≈ c[0, 0]
(this gives the length; to find the sequence itself a little more book-keeping is needed)

• Recursion: Forget about the original problem and focus on finding the LCS of x[i :]
and y[j :]. Look at the first positions of these sequences and distinguish the following
cases:

– if x[i] = y[j], then “match” x[i] and y[j] and combine this with the longest
common subsequence of x[i+ 1 :] and y[j + 1 :];

– if x[i] 6= y[j], then it must be that x[i] or y[j] or both are NOT used in the longest
common subsequence of x[i :] and y[j :]—GUESS WHICH ONE TO DROP

• Hence, the recursive formula is the following:

5

Lecture 19 Dynamic Programming II of IV 6.006 Fall 2009

if x[i] = y[j] : c[i, j] = 1 + c[i+ 1, j + 1]
else: c[i, j] = max{c[i+ 1, j]︸ ︷︷ ︸

x[i]out

, c[i, j + 1]︸ ︷︷ ︸
y[j]out

}

base cases: c[|x|, j] = c[i, |y|] = ∅

• Θ(1) time per subproblem =⇒ Θ(n2) total time for DP.

• DP table: See Figure 4 for subproblem dependency structure:

∅
∅

|x|

|y|

i

j

c[i, j]

c[i + 1, j]

c[i, j + 1]

c[i + 1, j + 1]

∅ ∅ ∅ ∅
∅

∅

∅

∅

∅

if x[i] != y[j]

if x[i] = y[j]

Figure 4: DP Table.

• recursive DP: implement the recursive formula for c[·, ·] given above, memoizing all
intermediated results

def LCS(x, y):
seen = { }
def c[i, j]:

if i ≥ len(x) or j ≥ len(y) : return ∅
if (i, j) not in seen:

if x[i] == y[j]:
seen[i, j] = 1 + c[i+ 1, j + 1]

else:
seen[i, j] = max(c[i+ 1, j], c[i, j + 1])

return seen[i, j]
return c(∅, ∅)

• bottom-up DP: fill in the table c[·, ·] in a “bottom-up” fashion, that is paying attention
to the dependency structure shown in Figure 4.

6

Lecture 19 Dynamic Programming II of IV 6.006 Fall 2009

def LCS(x, y):
c = {}
for i in range(len(x)):

c[i, len(y)] = ∅
for j in range(len(y)):

c[len(x), j] = ∅
for i in reversed(range(len(x))):

for j in reversed(range(len(y))):
if x[i] == y[j]:
c[i, j] = 1 + c[i+ 1, j + 1]

else:
c[i, j] = max(c[i+ 1, j], c[i, j + 1])

return c[∅, ∅]

Recovering LCS: [material covered in recitation and discussed also in

the next lecture]

• to get the LCS, not just its length, store parent pointers (like shortest paths) to
remember correct choices for guesses:

if x[i] = y[j]:
c[i, j] = 1 + c[i+ 1, j + 1]
parent[i, j] = (i+ 1, j + 1)

else:
if c[i+ 1, j] > c[i, j + 1]:
c[i, j] = c[i+ 1, j]
parent[i, j] = (i+ 1, j)

else:
c[i, j] = c[i, j + 1]
parent[i, j] = (i, j + 1)

• . . . and follow them at the end:

lcs = []
here = (∅,∅)
while c[here]:

if x[i] == y[j]:
lcs.append(x[i])

here = parent[here]

7

