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Lecture 17: Shortest Paths IV - Speeding up

Dijkstra

Lecture Overview

• Single-source single-target Dijkstra

• Bidirectional search

• Goal directed search - potentials and landmarks

Readings

Wagner paper on website, (upto Section 3.2)

DIJKSTRA single-source, single-target

Initialize()

Q← V [G]
while Q 6= φ

do u← EXTRACT MIN(Q) (stop if u = t!)

for each vertex v ε Adj[u]
do RELAX(u, v, w)

Observation: If only shortest path from s to t is required, stop when t is removed from
Q, i.e., when u = t
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Bi-Directional Search

Note: Speedup techniques covered here do not change worst-case behavior, but reduce the
number of visited vertices in practice.

S t

forward search

backward search

Figure 1: Bi-directional Search.

Bi-D Search

Alternate forward search from s

backward search from t

(follow edges backward)

df (u) distances for forward search

db(u) distances for backward search

Algorithm terminates when some vertex w has been processed, i.e., deleted from the queue
of both searches, Qf and Qb
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Figure 2: Bi-D Search.
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Subtlety: After search terminates, find node x with minimum value of df (x)+db(x). x may
not be the vertex w that caused termination as in example to the left!
Find shortest path from s to x using Πf and shortest path backwards from t to x using Πb.
Note: x will have been deleted from either Qf or Qb or both.
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Figure 3: Forward and Backward Search.

Minimum value for df (x) + db(x) over all vertices that have been processed in at least one
search

df (u) + db(u) = 3 + 6 = 9
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df (u′) + db(u′) = 6 + 3 = 9

df (w) + db(w) = 5 + 5 = 10

Goal-Directed Search or A∗

Modify edge weights with potential function over vertices.

w (u, v) = w (u, v)− λ(u) + λ(v)

Search toward target:

vv’

5 5
increase
go uphill

decrease
go downhill

Figure 4: Targeted Search

Correctness

w(p) = w(p)− λt(s) + λt(t)

So shortest paths are maintained in modified graph with w weights.

p

p’

s t

Figure 5: Modifying Edge Weights.

To apply Dijkstra, we need w(u, v) ≥ 0 for all (u, v).
Choose potential function appropriately, to be feasible.

Landmarks

Small set of landmarks LCV . For all u ∈ V, l ∈ L, pre-compute δ(u, l).
Potential λ

(l)
t (u) = δ(u, l)− δ(t, l) for each l.

CLAIM: λ
(l)
t is feasible.
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Feasibility

w(u, v) = w(u, v)− λ
(l)
t (u) + λ

(l)
t (v)

= w(u, v)− δ(u, l) + δ(t, l) + δ(v, l)− δ(t, l)

= w(u, v)− δ(u, l) + δ(v, l) ≥ 0 by the ∆ -inequality

λt(u) = max
l ε L

λ
(l)
t (u) is also feasible
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