Lecture 15: Shortest Paths II: Bellman-Ford

Lecture Overview

- Review: Notation
- Generic S.P. Algorithm
- Bellman Ford Algorithm
 - Analysis
 - Correctness

Recall:

path
$$p = \langle v_0, v_1, \dots, v_k \rangle$$

 $(v_1, v_{i+1}) \epsilon E \quad 0 \le i < k$
 $w(p) = \sum_{i=0}^{k-1} w(v_i, v_{i+1})$

Shortest path weight from u to v is $\delta(u, v)$. $\delta(u, v)$ is ∞ if v is unreachable from u, undefined if there is a negative cycle on some path from u to v.

Figure 1: Negative Cycle.

Generic S.P. Algorithm

Complexity:

Termination: Algorithm will continually relax edges when there are negative cycles present.

Figure 2: Algorithm may not terminate due to negative cycles.

Complexity could be exponential time with poor choice of edges.

Figure 3: Algorithm could take exponential time. The outgoing edges from v_0 and v_1 have weight 4, the outgoing edges from v_2 and v_3 have weight 2, the outgoing edges from v_4 and v_5 have weight 1.

5-Minute 6.006

Here's what I want you to remember from 6.006 five years after you graduate

Figure 4: Exponential vs. Polynomial.

Bellman-Ford(G,W,S)

```
Initialize ()  \begin{split} &\text{for } i=1 \text{ to } \mid v \mid -1 \\ &\text{ for each edge } (u,v) \epsilon E \text{:} \\ &\text{ Relax}(u,v) \end{split}   &\text{for each edge } (u,v) \epsilon E \\ &\text{ do if } d[v] > d[u] + w(u,v) \\ &\text{ then report a negative-weight cycle exists}
```

At the end, $d[v] = \delta(s, v)$, if no negative-weight cycles

Figure 5: The numbers in circles indicate the order in which the δ values are computed. Error: Edge from D to E on left graph should be from E to D as in the right graph.

Theorem:

If G = (V, E) contains no negative weight cycles, then after Bellman-Ford executes $d[v] = \delta(u, v)$ for all $v \in V$.

Proof:

 $v \in V$ be any vertex. Consider path p from s to v that is a shortest path with minimum number of edges.

Figure 6: Illustration for proof.

Initially $d[v_0] = 0 = \delta(s, v_0)$ and is unchanged since no negative cycles.

After 1 pass through E, we have $d[v_1] = \delta(s, v_1)$

After 2 passes through E, we have $d[v_2] = \delta(s, v_2)$

After k passes through E, we have $d[v_k] = \delta(s, v_k)$

No negative weight cycles $\implies p$ is simple $\implies p$ has $\leq |V| - 1$ edges

Corollary

If a value d[v] fails to converge after |V| - 1 passes, there exists a negative-weight cycle reachable from s.