Lecture 15: Shortest Paths II: Bellman-Ford

Lecture Overview

- Review: Notation
- Generic S.P. Algorithm
- Bellman Ford Algorithm
	- Analysis
	- Correctness

Recall:

path
$$
p = \langle v_0, v_1, \dots, v_k \rangle
$$

\n
$$
(v_1, v_{i+1}) \in E \quad 0 \le i \le k
$$
\n
$$
w(p) = \sum_{i=0}^{k-1} w(v_i, v_{i+1})
$$

Shortest path weight from u to v is $\delta(u, v)$. $\delta(u, v)$ is ∞ if v is unreachable from u, undefined if there is a negative cycle on some path from u to v .

Figure 1: Negative Cycle.

Generic S.P. Algorithm

Initialize: for $v \in V$: $\frac{d [v]}{d [v]} \leftarrow \infty$ $\Pi\left[v\right]$ ← NIL $d[S] \leftarrow 0$ Main: repeat select edge (u, v) [somehow] "Relax" edge (u, v) \int if $d[v] > d[u] + w(u, v)$: \vert $d[v] \leftarrow d[u] + w(u, v)$ $\pi[v] \leftarrow u$ until you can't relax any more edges or you're tired or . . .

Complexity:

Termination: Algorithm will continually relax edges when there are negative cycles present.

Figure 2: Algorithm may not terminate due to negative cycles.

Complexity could be exponential time with poor choice of edges.

Figure 3: Algorithm could take exponential time. The outgoing edges from v_0 and v_1 have weight 4, the outgoing edges from v_2 and v_3 have weight 2, the outgoing edges from v_4 and v_{5} have weight 1.

5-Minute 6.006

Here's what I want you to remember from 6.006 five years after you graduate

Bellman-Ford(G,W,S)

Initialize () for $i = 1$ to $|v| - 1$ for each edge $(u, v) \in E$: $Relax(u, v)$ for each edge $(u, v) \in E$ do if $d[v] > d[u] + w(u, v)$ then report a negative-weight cycle exists

At the end, $d[v] = \delta(s, v)$, if no negative-weight cycles

Figure 5: The numbers in circles indicate the order in which the δ values are computed. Error: Edge from D to E on left graph should be from E to D as in the right graph.

Theorem:

If $G = (V, E)$ contains no negative weight cycles, then after Bellman-Ford executes $d[v] =$ $\delta(u, v)$ for all $v \in V$.

Proof:

 veV be any vertex. Consider path p from s to v that is a shortest path with minimum number of edges.

Figure 6: Illustration for proof.

Initially $d[v_0] = 0 = \delta(s, v_0)$ and is unchanged since no negative cycles. After 1 pass through E, we have $d[v_1] = \delta(s, v_1)$ After 2 passes through E, we have $d[v_2] = \delta(s, v_2)$ After k passes through E, we have $d[v_k] = \delta(s, v_k)$ No negative weight cycles $\implies p$ is simple $\implies p$ has $\leq |V| - 1$ edges

Corollary

If a value $d[v]$ fails to converge after $|V| - 1$ passes, there exists a negative-weight cycle reachable from s.