Lecture 14 Shortest Paths I: Intro 6.006 Fall 2009

Lecture 14: Shortest Paths I: Intro

Lecture Overview

e Weighted Graphs
e General Approach
e Negative Edges

e Optimal Substructure

Readings

CLRS, Sections 24 (Intro)

Motivation:
Shortest way to drive from A to B Google maps “get directions”
Formulation: Problem on a weighted graph G(V,E) W:E — R

Two algorithms: Dijkstra O(V lgV + E) assumes non-negative edge weights
Bellman Ford O(V E) is a general algorithm
Application
e Find shortest path from CalTech to MIT

— See “CalTech Cannon Hack” photos web.mit.edu
— See Google Maps from CalTech to MIT

e Model as a weighted graph G(V, E),W : E — R

— V = vertices (street intersections)
— E = edges (street, roads); directed edges (one way roads)

— W(U,V) = weight of edge from u to v (distance, toll)

path p = < wvg,vy,...v, >
(vi,vit1) € B for 0<i<k

N
—_

w(p) = ' w(vs, Vit1)

Il
o

Lecture 14 Shortest Paths I: Intro 6.006 Fall 2009

Weighted Graphs:

Notation:
p
Vo — Vg
Definition:

means p is a path from vy to vg. (vg) is a path from vy to vy of weight 0.

Shortest path weight from u to v as

min {w(p) : b } if 3 any such path
u

00 otherwise (v unreachable from w)

Single Source Shortest Paths:

Given G = (V, E),w and a source vertex S, find 6(5, V') [and the best path] from S to each
veV.
Data structures:

d[v] = wvalue inside circle
0 ifo=s .
= . <= initially
00 otherwise

= J(s,v) <= at end
dlv] > 0(s,v) at all times

d[v] decreases as we find better paths to v
IT[v] = predecessor on best path to v, II[s] = NIL

Lecture 14 Shortest Paths I: Intro 6.006 Fall 2009

Example:

Figure 1: Shortest Path Example: Bold edges give predecessor II relationships

Negative-Weight Edges:
e Natural in some applications (e.g., logarithms used for weights)
e Some algorithms disallow negative weight edges (e.g., Dijkstra)
e If you have negative weight edges, you might also have negative weight cycles —-

may make certain shortest paths undefined!

Example:

See Figure [2]

B — D — C — B (origin) has weight -6 +2+3 = —1 < 0!
Shortest path S — C (or B, D, FE) is undefined. Can go around B — D — C' as many
times as you like
Shortest path S — A is defined and has weight 2

Lecture 14 Shortest Paths I: Intro 6.006 Fall 2009

Figure 2: Negative-weight Edges. Error: Edge from B to C' should be from C to B.

If negative weight edges are present, s.p. algorithm should find negative weight cycles (e.g.,
Bellman Ford)

General structure of S.P. Algorithms (no negative cycles)

Initialize: forveV: ﬁ[ﬁ]] : I\(I)IOL
d[S] <0
Main: repeat

select edge (u,v) [somehow]
if d[v] > du] + w(u,v) :
“Relax” edge (u,v) d[v] — du] + w(u,v)
] — u

until all edges have d[v] < d[u] + w(u,v)

Lecture 14 Shortest Paths I: Intro 6.006 Fall 2009

Complexity:

Termination? (needs to be shown even without negative cycles)
Could be exponential time with poor choice of edges.

GOm0

Vv

0 5 6 7
4 8 10 12 13 14
T(0)=0 v, V, 13
vV, 10 11 12
T(n+2) =3+ 2T(n v,V 11
Cz\/v v 4 6 8 9 10
0, 2
T(n) =6(2"?) v,V 9
' 6 7 8
7

Figure 3: Running Generic Algorithm. The outgoing edges from vy and v; have weight 4,
the outgoing edges from vy and wvs have weight 2, the outgoing edges from v4 and vs have

weight 1.

Optimal Substructure:

Theorem: Subpaths of shortest paths are shortest paths
Let p = < wvg,v1,...v, > be a shortest path
Letpij = < V4, Vi41,...U5 > 0<i<j<k
Then p;; is a shortest path.
Proof:
Py; P; Pi
p=VO\/\x Vi N\ij\/\ka

Figure 4: Optimal Substructure Theorem

If p;j is shorter than p;;, cut out p;; and replace with pgj; result is shorter than p.

Contradiction.

Lecture 14 Shortest Paths I: Intro 6.006 Fall 2009

Triangle Inequality:

Theorem: For all u,v,x eX, we have
0 (u,v) <6 (u,z)+ 0 (z,v)

Proof:

Figure 5: Triangle inequality

