
Lecture 13 Searching III 6.006 Fall 2009

Lecture 13: Searching III: Topological Sort

Lecture Overview: Search 3 of 3

• BFS vs. DFS

• job scheduling

• topological sort

• strongly connected components

Readings

CLRS, Sections 22.4 and 22.5 (at a high level)

Recall:

• Breadth-First Search (BFS): level by level

• Depth-First Search (DFS): backtrack as neccessary.

• Both O(V + E) worst-case time =⇒ optimal

• BFS computes shortest paths (min.] edges)

• DFS is a bit simpler & has useful properties

1

Lecture 13 Searching III 6.006 Fall 2009

Job Scheduling:

Given Directed Acylic Graph (DAG), where vertices represent tasks & edges represent
dependencies, order tasks without violating dependencies

G H I

48 9

G H I

1235
A B C F

5

D E
7 6

Figure 1: Dependence Graph

Source

Source = vertex with no incoming edges
= schedulable at beginning (A,G,I)

Attempt

BFS from each source:

- from A �nds H,B,C,F

- from D �nds C, E, F

- from G �nds H
} need to merge

 - costly

Figure 2: BFS-based Scheduling

2

Lecture 13 Searching III 6.006 Fall 2009

Topological Sort

Reverse of DFS finishing times (time at which vertex’s outgoing edges finished)
We have a new field time that stores the finishing time. To get a topological sort that

solves the job scheduling problem, we simply run the DFS procedure below.

parent = {s: None}

time = {}

ft = 0

DFS-visit (V, Adj, s):

for v in Adj [s]:

if v not in parent:

parent [v] = s

DFS-visit (V, Adj, v)

ft = ft + 1

time[s] = ft

TOPSORT (V, Adj)

parent = { }

for s in V:

if s not in parent:

parent [s] = None

DFS-visit (V, Adj, s)

Given the time dictionary, one can generate all keys from the dictionary and insert into
an array of length |V | indexed by the appropriate finishing time ft.

In Figure 1, we run DFS-visit starting from vertex A and reach B, C and F . F finishes
first, followed by C and B in the recursion. Next, we reach H from A. Then we are done
with A. DFS-visit beginning with A generates a depth-first tree with the vertices A, B,
C, F , and H, and the edges (A,B), (B,C), (C,F), and (A,H). We next run DFS-visit

starting with vertex D and reach vertex E. (Vertices C and F have already been visited.)
This generates the depth-first tree with vertices D and E and with edge (D,E). We next
start and end with vertex G, since we have already explored H. This generates the depth-
first tree with the vertex G and no edges. Finally we start and end with vertex I. This
generates the depth-first tree with the vertex I and no edges.

The reverse order of the finishing times shown in Figure 1 is a topological sort.
Note that the DFS procedure can be run on any graph – the graph does not have to be

a DAG. We can compute finishing times for each vertex. These will depend on the order
edges are listed in Adj. Even if the graph is not a DAG, these finishing times are useful. In
particular, they are useful in determining the strongly connected components (SCCs) of a
graph.

3

Lecture 13 Searching III 6.006 Fall 2009

Strongly Connected Components

C is an SCC of a directed graph G(V,E) if for every pair of vertices u and v in C there is a
path from u to v and a path from v to u. The SCCs of a DAG correspond to the vertices,
i.e., each vertex is an SCC. For graphs with cycles, SCCs are non-trivial to compute.

For an algorithm to compute the SCCs of a graph, see CLRS Second/Third Edition
22.5. You should understand the algorithm, but you are not responsible for the proof of
correctness.

4

