Lecture 11: Searching I: Graph Search and Representations

Lecture Overview: Search 1 of 3

- Graph Search
- Applications
- Graph Representations
- Introduction to breadth-first and depth-first search

Readings

CLRS 22.1-22.3, B.4

Graph Search

Explore a graph e.g., find a path from start vertices to a desired vertex **Recall:** graph $G = (V, E)$

- $V =$ set of vertices (arbitrary labels)
- $E =$ set of edges i.e. vertex pairs (v, w)
	- ordered pair \implies directed edge of graph
	- unordered pair $\implies undirected$

Figure 1: Example to illustrate graph terminology

Applications:

There are many.

- web crawling (How Google finds pages)
- social networking (Facebook friend finder)
- computer networks (Routing in the Internet) shortest paths [next unit]
- solving puzzles and games
- checking mathematical conjectures

Pocket Cube:

Consider a $2 \times 2 \times 2$ Rubik's cube

Figure 2: Rubik's Cube

- Configuration Graph:
	- vertex for each possible state
	- edge for each basic move (e.g., 90 degree turn) from one state to another
	- undirected: moves are reversible
- Puzzle: Given initial state s , find a path to the solved state
- \sharp vertices = $8! \cdot 3^8 = 264, 539, 520$ (because there are 8 cubelets in arbitrary positions, and each cubelet has 3 possible twists)

Figure 3: Illustration of Symmetry

 $\bullet\,$ can factor out 24-fold symmetry of cube: fix one cubelet

$$
\implies 7! \cdot 3^7 = 11,022,480
$$

• in fact, graph has 3 connected components of equal size \implies only need to search in one

$$
\implies 7! \cdot 3^6 = 3,674,160
$$

"Geography" of configuration graph

] reachable configurations

distance	90° turns	90° & 180° turns
$\boldsymbol{0}$	1	1
1	6	9
$\overline{2}$	27	54
3	120	321
4	534	1,847
$\overline{5}$	2,256	9,992
$\,6$	8,969	50,136
7	33,058	227,536
8	114,149	870,072
9	360,508	1,887,748
10	930,588	623,800
11	1,350,852	$2,644 \leftarrow diameter$
12	782,536	
13	90,280	
14	$276 \leftarrow diameter$	
	3,674,160	3,674,160
		Wikipedia Pocket Cube

Cf. $3 \times 3 \times 3$ Rubik's cube: ≈ 1.4 trillion states; diameter is unknown! ≤ 26

Representing Graphs: (data structures)

Adjacency lists:

Array Adj of $|V|$ linked lists

- for each vertex $u \in V$, $Adj[u]$ stores u's neighbors, i.e., $\{v \in V \mid (u, v) \in E\}$. (u, v) are just outgoing edges if directed. (See Fig. [5](#page-4-0) for an example)
- in Python: $Adj =$ dictionary of list/set values and vertex = any hashable object (e.g., int, tuple)
- advantage: multiple graphs on same vertices

Figure 5: Adjacency List Representation (Error: edge in graph on left should be from b to a, not a to b)

Object-oriented variations:

- object for each vertex u
- u.neighbors = list of neighbors i.e., $Adj[u]$

Incidence Lists:

- can also make edges objects (see Figure [6\)](#page-5-0)
- u.edges = list of (outgoing) edges from u .
- advantage: storing data with vertices and edges without hashing

Figure 6: Edge Representation

Representing Graphs: contd.

The above representations are good for for sparse graphs where $|E| \ll (|V|)^2$. This translates to a space requirement = $\Theta(V + E)$ (Don't bother with $| \cdot |$'s inside O/Θ).

Adjacency Matrix:

- assume $V = \{1, 2, \ldots, |v|\}$ (number vertices)
- $A = (a_{ij}) = |V| \times |V|$ matrix where $i = \text{row}$ and $j = \text{column}$, and

$$
a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in \mathcal{E} \\ \phi & \text{otherwise} \end{cases}
$$

See Figure [7.](#page-5-1)

- good for dense graphs where $|E| \approx (|V|)^2$
- space requirement = $\Theta(V^2)$
- cool properties like A^2 gives length-2 paths and Google PageRank $\approx A^{\infty}$
- but we'll rarely use it Google couldn't; $|V| \approx 20$ billion $\implies (|V|)^2 \approx 4.10^{20}$ [50,000 petabytes]

$$
A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{matrix} 1 \\ 2 \\ 3 \end{matrix}
$$

Figure 7: Matrix Representation (Error: edge in graph on left should be from b to a, not a to b)

Implicit Graphs:

Adj (u) is a function or u.neighbors/edges is a method \implies "no space" (just what you need now)

High level overview of next two lectures:

Breadth-first search

Levels like "geography"

Figure 8: Illustrating Breadth-First Search

- \bullet frontier = current level
- initially $\{s\}$
- repeatedly advance frontier to next level, careful not to go backwards to previous level
- actually find shortest paths i.e. fewest possible edges

Depth-first search

This is like exploring a maze.

- e.g.: (left-hand rule) See Figure [9](#page-7-0)
- follow path until you get stuck
- backtrack along breadcrumbs until you reach an unexplored edge
- $\bullet\,$ recursively explore it
- $\bullet\,$ careful not to repeat a vertex

Figure 9: Illustrating Depth-First Search