Lecture 11: Searching I: Graph Search and Representations

Lecture Overview: Search 1 of 3

- Graph Search
- Applications
- Graph Representations
- Introduction to breadth-first and depth-first search

Readings

CLRS 22.1-22.3, B.4

Graph Search

Explore a graph e.g., find a path from start vertices to a desired vertex **Recall**: graph G = (V, E)

- V = set of vertices (arbitrary labels)
- E = set of edges i.e. vertex pairs (v, w)
 - ordered pair \implies directed edge of graph
 - unordered pair \implies undirected

Figure 1: Example to illustrate graph terminology

Applications:

There are many.

- web crawling (How Google finds pages)
- social networking (Facebook friend finder)
- computer networks (Routing in the Internet) shortest paths [next unit]
- solving puzzles and games
- checking mathematical conjectures

Pocket Cube:

Consider a $2\times 2\times 2$ Rubik's cube

Figure 2: Rubik's Cube

- Configuration Graph:
 - vertex for each possible state
 - edge for each basic move (e.g., 90 degree turn) from one state to another
 - undirected: moves are reversible
- Puzzle: Given initial state s, find a path to the solved state
- ♯ vertices = 8! ⋅ 3⁸ = 264, 539, 520 (because there are 8 cubelets in arbitrary positions, and each cubelet has 3 possible twists)

Figure 3: Illustration of Symmetry

• can factor out 24-fold symmetry of cube: fix one cubelet

Lecture 11

$$\implies 7! \cdot 3^7 = 11,022,480$$

in fact, graph has 3 connected components of equal size ⇒ only need to search in one

$$\implies 7! \cdot 3^6 = 3,674,160$$

"Geography" of configuration graph

reachable configurations

<u>distance</u>	90° turns	90° & 180° turns
0	1	1
1	6	9
2	27	54
3	120	321
4	534	$1,\!847$
5	2,256	9,992
6	8,969	$50,\!136$
7	$33,\!058$	$227,\!536$
8	$114,\!149$	$870,\!072$
9	$360,\!508$	$1,\!887,\!748$
10	$930,\!588$	$623,\!800$
11	$1,\!350,\!852$	$2{,}644 \leftarrow \text{diameter}$
12	$782,\!536$	
13	$90,\!280$	
14	$276 \leftarrow \text{diameter}$	
	3,674,160	3,674,160
		Wikipedia Pocket Cube

Cf. $3 \times 3 \times 3$ Rubik's cube: ≈ 1.4 trillion states; diameter is unknown! ≤ 26

Representing Graphs: (data structures)

Adjacency lists:

Array Adj of |V| linked lists

- for each vertex $u \in V$, Adj[u] stores u's neighbors, i.e., $\{v \in V \mid (u, v) \in E\}$. (u, v) are just outgoing edges if directed. (See Fig. 5 for an example)
- in Python: Adj = dictionary of list/set values and vertex = any hashable object (e.g., int, tuple)
- advantage: multiple graphs on same vertices

Figure 5: Adjacency List Representation (Error: edge in graph on left should be from b to a, not a to b)

Object-oriented variations:

- object for each vertex u
- u.neighbors = list of neighbors i.e., Adj[u]

Incidence Lists:

- can also make edges objects (see Figure 6)
- u.edges = list of (outgoing) edges from u.
- advantage: storing data with vertices and edges without hashing

Figure 6: Edge Representation

Representing Graphs: contd.

The above representations are good for for sparse graphs where $|E| \ll (|V|)^2$. This translates to a space requirement = $\Theta(V + E)$ (Don't bother with |.|'s inside O/Θ).

Adjacency Matrix:

- assume $V = \{1, 2, \dots, |v|\}$ (number vertices)
- $A = (a_{ij}) = |V| \times |V|$ matrix where i = row and j = column, and

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \ \epsilon \\ \phi & \text{otherwise} \end{cases}$$

See Figure 7.

- good for dense graphs where $\mid E \mid \approx (\mid V \mid)^2$
- space requirement = $\Theta(V^2)$
- cool properties like A^2 gives length-2 paths and Google PageRank $\approx A^{\infty}$
- but we'll rarely use it Google couldn't; $|V| \approx 20$ billion $\implies (|V|)^2 \approx 4.10^{20}$ [50,000 petabytes]

a
b
c
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 3 \end{pmatrix}$$

Figure 7: Matrix Representation (Error: edge in graph on left should be from b to a, not a to b)

Implicit Graphs:

 $\operatorname{Adj}(u)$ is a function or u.neighbors/edges is a method \implies "no space" (just what you need now)

High level overview of next two lectures:

Breadth-first search

Levels like "geography"

Figure 8: Illustrating Breadth-First Search

- $\underline{\text{frontier}} = \text{current level}$
- initially $\{s\}$
- repeatedly advance frontier to next level, careful not to go backwards to previous level
- actually find <u>shortest</u> paths i.e. fewest possible edges

Depth-first search

This is like exploring a maze.

- e.g.: (left-hand rule) See Figure 9
- follow path until you get stuck
- backtrack along breadcrumbs until you reach an unexplored edge

- recursively explore it
- careful not to repeat a vertex

Figure 9: Illustrating Depth-First Search