Lecture 7 Hashing III: Open Addressing 6.006 Fall 2009

Lecture 7: Hashing III: Open Addressing

Lecture Overview
e Open Addressing, Probing Strategies
e Uniform Hashing, Analysis

e Advanced Hashing

Readings

CLRS Chapter 11.4 (and 11.3.3 and 11.5 if interested)

Open Addressing
Another approach to collisions:

e 1no chaining; instead all items stored in table (see Fig.

item,

item,

item,

Figure 1: Open Addressing Table

e one item per slot = m >n

e hash function specifies order of slots to probe (try) for a key (for insert/search/delete),
not just one slot; in math. notation:

We want to design a function h, with the property that for all k € U:

h:Ux{0,1,....,m—1} —{0,1,...,m — 1}

/

universe of keys trial count slot in table

is a permutation of 0,1,...,m — 1.

Lecture 7 Hashing III: Open Addressing 6.006 Fall 2009

h(k,2)

h(k,0)

h(k,3)

h(k,1)

Figure 2: Order of Probes

Insert(k,v) : Keep probing until an empty slot is found. Insert item into that slot.

for i in xrange(m):

if T'[h(k,i)] is None: 1 empty slot

Tlh(k,i)] = (k,v) f store item
return
raise ‘full’

Example: Insert k = 496

1]
1 586 collision
2 133
probe h(496,0)=4 3
probe A(496,1)=6 4 204 collision
probe 5(496,2)=1 9 496 free spot!
probe h(496,3)=5 6 481 collision
7
m-1

Figure 3: Insert Example

Lecture 7 Hashing III: Open Addressing 6.006 Fall 2009

Search(k): As long as the slots you encounter by probing are occupied by keys # k,
keep probing until you either encounter k or find an empty slot—return success or failure

respectively.

for i in xrange(m):

if T[h(k,i)] is None: f empty slot?
return None # end of “chain”
elif T[h(k,q)][0] == k: # matching key
return T'[h(k,1)] # return item
return None " 1 exhausted table

Deleting Items?
e can’t just find item and remove it from its slot (i.e. set T'[h(k,7)] = None)
o czample: delete(586) = search(496) fails

e replace item with , which Insert treats as None but Search

doesn’t

Probing Strategies
Linear Probing

h(k,i) = (W' (k) +i) mod m where h'(k) is ordinary hash function

e problem? clustering—cluster: consecutive group of occupied slots
as clusters become longer, it gets more likely to grow further (see Fig. [4)

e can be shown that for 0.01 < a < 0.99 say, clusters of size ©(logn).

Double Hashing
h(k,i) =(h1(k) +i-ha(k)) mod m where hi(k) and ho(k) are two ordinary hash functions.

e actually hit all slots (permutation) if ha(k) is relatively prime to m for all k

why?

e c.g. m = 2" make hy(k) always odd

Lecture 7 Hashing III: Open Addressing 6.006 Fall 2009

if h(k,0) is any of

these, thc_—z cluster
cluster will get
bigger

m-1

Figure 4: Primary Clustering

Uniform Hashing Assumption (cf. Simple Uniform Hashing Assumption)

Each key is equally likely to have any one of the m! permutations as its probe sequence
e not really true

e but double hashing can come close

Analysis

Suppose we have used open addressing to insert n items into table of size m. Under
the uniform hashing assumption the next operation has expected cost of < T—o where
a=n/m(<1).

Example: o = 90% = 10 expected probes

Proof:

Suppose we want to insert an item with key k. Suppose that the item is not in the table.

m—n

e probability first probe successful: =:p

(n bad slots, m total slots, and first probe is uniformly random)
m—n m—-n __
m—1 2 m P

(one bad slot already found, m—n good slots remain and the second probe is uniformly

e if first probe fails, probability second probe successful:

random over the m — 1 total slots left)

m—n

e if 1st & 2nd probe fail, probability 3rd probe successful: =5 > === =p

(since two bad slots already found, m — n good slots remain and the third probe is

uniformly random over the m — 2 total slots left)

Lecture 7 Hashing III: Open Addressing 6.006 Fall 2009

= Every trial, success with probability at least p.
Expected Number of trials for success?

With a little though it follows that search, delete take time O(1/(1 — «)). Ditto if we
attempt to insert an item that is already there.ll

Open Addressing vs. Chaining

Open Addressing: better cache performance

Chaining: less sensitive to hash functions and
the load factor o

Advanced Hashing—

Universal Hashing

Goal: Get rid of the simple uniform hashing assumption, while keeping operations at ex-
pected cost O(1).

Idea: Instead of defining one hash function, define a family of hash functions
H= {hl,hg,...,hp | hz :L[—»{O,l,...,m—l}},

and select a random h € H before starting our insert/delete/search op’s; e.g. multiplication
method with random multiplier a.

Def: H is called iff for all pairs of keys k1, ko € U:

1
Pr(ovcr random h){h(kl) = h(kQ)} = E

Such families H exist. (see CLRS 11.3.3)

=—> O(1) expected time per operation without assuming simple uniform hashing!

Lecture 7 Hashing III: Open Addressing 6.006 Fall 2009

Why? Suppose we use chaining, and have inserted keys ki, ko, ..., k, into the hash table
using a random h from H. Suppose we search for key k. The cost to search is bounded
by the number of keys stored at slot h(k) of the hash table (+O(1) to compute h(k) etc.).
Hence,

cost(to search k) = O(1) + O Z L) =h(k) | »
ki ki K

where 1j,,)=n(k) 18 1 if h(k;) = h(k) and 0 otherwise (indicator function). By linearity of
expectation, we have:

E(()ver random h) [COSt(tO search k)] = 0(1) +0 Z E(()Ver random h) [ﬂh(kl):h(k)}
ki ki#k

- O(l) +0 Z Pr(over random h){h(kl) - h(k2)}
ki kit

—0(1)+0

(since H is a universal family)

3=

ki ks 2k
< O(1+n/m).

Perfect Hashing

Guarantee O(1) worst-case search, if keys known in advance (see CLRS 11.5 if interested).

