
Lecture 7 Hashing III: Open Addressing 6.006 Fall 2009

Lecture 7: Hashing III: Open Addressing

Lecture Overview

• Open Addressing, Probing Strategies

• Uniform Hashing, Analysis

• Advanced Hashing

Readings

CLRS Chapter 11.4 (and 11.3.3 and 11.5 if interested)

Open Addressing

Another approach to collisions:

• no chaining; instead all items stored in table (see Fig. 1)

item2

item1

item3

Figure 1: Open Addressing Table

• one item per slot =⇒ m ≥ n

• hash function specifies order of slots to probe (try) for a key (for insert/search/delete),
not just one slot; in math. notation:

We want to design a function h, with the property that for all k ∈ U :

h : U × {0, 1, . . . ,m− 1}→ {0, 1, . . . ,m− 1}

universe of keys trial count slot in table 

〈h(k, 0), h(k, 1), . . . , h(k,m− 1)〉

is a permutation of 0, 1, . . . ,m − 1. i.e. if I keep trying h(k, i) for increasing i, I will
eventually hit all slots of the table.

1



Lecture 7 Hashing III: Open Addressing 6.006 Fall 2009

Ø 
1 

m-1 

Figure 2: Order of Probes

Insert(k,v) : Keep probing until an empty slot is found. Insert item into that slot.

for i in xrange(m):

if T [h(k, i)] is None: ] empty slot

T [h(k, i)] = (k, v) ] store item

return

raise ‘full’

Example: Insert k = 496

586	  

133	  

204	  

496	  

481	  

collision 

collision 
free spot! 

Ø
1 

m-1 

2 
3 
4 
5 
6 

7 
collision 

Figure 3: Insert Example

2



Lecture 7 Hashing III: Open Addressing 6.006 Fall 2009

Search(k): As long as the slots you encounter by probing are occupied by keys 6= k,
keep probing until you either encounter k or find an empty slot—return success or failure
respectively.

for i in xrange(m):

if T [h(k, i)] is None: ] empty slot?

return None ] end of “chain”

elif T [h(k, i)][∅] == k: ] matching key

return T [h(k, i)] ] return item

return None ˙ ] exhausted table

Deleting Items?

• can’t just find item and remove it from its slot (i.e. set T [h(k, i)] = None)

• example: delete(586) =⇒ search(496) fails

• replace item with special flag: “DeleteMe”, which Insert treats as None but Search
doesn’t

Probing Strategies

Linear Probing

h(k, i) = (h′(k) +i) mod m where h′(k) is ordinary hash function

• like street parking

• problem? clustering—cluster: consecutive group of occupied slots
as clusters become longer, it gets more likely to grow further (see Fig. 4)

• can be shown that for 0.01 < α < 0.99 say, clusters of size Θ(log n).

Double Hashing

h(k, i) =(h1(k) +i·h2(k)) mod m where h1(k) and h2(k) are two ordinary hash functions.

• actually hit all slots (permutation) if h2(k) is relatively prime to m for all k
why?

h1(k) + i · h2(k) mod m = h1(k) + j · h2(k) mod m⇒ d/(i− j)

• e.g. m = 2r, make h2(k) always odd

3



Lecture 7 Hashing III: Open Addressing 6.006 Fall 2009

Ø 
1 

m-1 

cluster 

if h(k,0) is any of 
these, the 
cluster will get 
bigger 

Figure 4: Primary Clustering

Uniform Hashing Assumption (cf. Simple Uniform Hashing Assumption)

Each key is equally likely to have any one of the m! permutations as its probe sequence

• not really true

• but double hashing can come close

Analysis

Suppose we have used open addressing to insert n items into table of size m. Under

the uniform hashing assumption the next operation has expected cost of ≤ 1
1− α , where

α = n/m(< 1).
Example: α = 90% =⇒ 10 expected probes

Proof:

Suppose we want to insert an item with key k. Suppose that the item is not in the table.

• probability first probe successful: m−n
m =: p

(n bad slots, m total slots, and first probe is uniformly random)

• if first probe fails, probability second probe successful: m−n
m−1 ≥ m−n

m = p

(one bad slot already found, m−n good slots remain and the second probe is uniformly
random over the m− 1 total slots left)

• if 1st & 2nd probe fail, probability 3rd probe successful: m−n
m−2 ≥ m−n

m = p

(since two bad slots already found, m − n good slots remain and the third probe is
uniformly random over the m− 2 total slots left)

4



Lecture 7 Hashing III: Open Addressing 6.006 Fall 2009

• ...

⇒ Every trial, success with probability at least p.
Expected Number of trials for success?

1
p

=
1

1− α.

With a little though it follows that search, delete take time O(1/(1 − α)). Ditto if we
attempt to insert an item that is already there.�

Open Addressing vs. Chaining

Open Addressing: better cache performance (better memory usage, no pointers needed)

Chaining: less sensitive to hash functions (OA requires extra care to avoid clustering) and
the load factor α (OA degrades past 70% or so and in any event cannot support values
larger than 1)

———————————————————–

Advanced Hashing—This is advanced material for the interested readers

only. More about this in 6.046.

Universal Hashing

Goal: Get rid of the simple uniform hashing assumption, while keeping operations at ex-
pected cost O(1).

Idea: Instead of defining one hash function, define a family of hash functions

H = {h1, h2, . . . , hp | hi : U → {0, 1, . . . ,m− 1}},

and select a random h ∈ H before starting our insert/delete/search op’s; e.g. multiplication
method with random multiplier a.

Def: H is called a universal family of hash functions iff for all pairs of keys k1, k2 ∈ U :

Pr(over random h){h(k1) = h(k2)} =
1
m
.

Such families H exist. (see CLRS 11.3.3)

=⇒ O(1) expected time per operation without assuming simple uniform hashing!

5



Lecture 7 Hashing III: Open Addressing 6.006 Fall 2009

Why? Suppose we use chaining, and have inserted keys k1, k2, . . . , kn into the hash table
using a random h from H. Suppose we search for key k. The cost to search is bounded
by the number of keys stored at slot h(k) of the hash table (+O(1) to compute h(k) etc.).
Hence,

cost(to search k) = O(1) +O

 ∑
ki,ki 6=k

1h(ki)=h(k)

 ,

where 1h(ki)=h(k) is 1 if h(ki) = h(k) and 0 otherwise (indicator function). By linearity of
expectation, we have:

E(over random h) [cost(to search k)] = O(1) +O

 ∑
ki,ki 6=k

E(over random h)

[
1h(ki)=h(k)

]
= O(1) +O

 ∑
ki,ki 6=k

Pr(over random h){h(k1) = h(k2)}


= O(1) +O

 ∑
ki,ki 6=k

1
m

 (since H is a universal family)

≤ O(1 + n/m).

Perfect Hashing

Guarantee O(1) worst-case search, if keys known in advance (see CLRS 11.5 if interested).

6


