
Lecture 5 Hashing I: Chaining, Hash Functions 6.006 Fall 2009

Lecture 5: Hashing I: Chaining, Hash Functions

Lecture Overview

• Dictionaries

• Motivation — fast DNA comparison

• Hash functions

• Collisions, Chaining

• Simple uniform hashing

• “Good” hash functions

Readings

CLRS Chapter 11. 1, 11. 2, 11. 3.

Dictionary Problem

Dictionary: Abstract Data Type (ADT) maintaining a set of items, each with a key.

E.g. (phonebook) keys are names, and their corresponding items are phone numbers
E.g.2 (real dictionary) keys are english words, and their corresponding items are
dictionary-entries

Operations to Support:

• insert(item): add item to set

• delete(item): remove item from set

• search(key): return item with key if it exists

Assumption: items have distinct keys (or that inserting new one clobbers old)

• Balanced BSTs solve in O(log n) time per operation (in addition to inexact searches
like nextlargest). What is the O(·) notation hiding? Reality: O(log n)·key length
— important distinction if key is not a number or key-length is larger than machine
word.

• Our goal: O(1) time per operation (again we mean O(1) · key length). Using an idea
called ‘Rolling Hash’ in the next lecture, we will sometimes manage to avoid paying
the key length multiplicative penalty (on average).

1

Lecture 5 Hashing I: Chaining, Hash Functions 6.006 Fall 2009

Motivation

Example Application: How close is chimp DNA to human DNA?
Find the longest common substring of two strings, e.g. ALGORITHM vs. ARITHMETIC.

Naive algorithm?

INPUT: two strings S1, S2 of length n.

for l= n, n-1, ... , 1

for all substrings x1 of S1 of length l

for all substrings x2 of S2 of length l

if x1==x2 return l;

i.e. compare all possible substrings of the two DNA sequences — needs Θ(n4) operations.

Improvements? Can do binary search (how?) on the length of the longest common
substring, dropping down the number of operations to Θ(n3 log n).

→ Using dictionaries can drop this down to Θ(n2 log n). Here is how:

For all possible lengths l:

• Insert all substrings of S1 of length l into a dictionary;
(there are O(n) such substrings, and each insertion takes O(1) · l time)

• for all O(n) substrings of S2 of length l do a O(1) · l look-up!

Running time is O(n3). Now replacing the outer loop with Binary Search reduces this to
O(n2 log n).

2

Lecture 5 Hashing I: Chaining, Hash Functions 6.006 Fall 2009

How do we solve the dictionary problem?

A simple approach would be a direct access table. This means items would need to be
stored in an array, indexed by key.

Ø
1

2

key

key

key

item

item

item

Figure 1: Direct-access table

Problems:

1. keys must be nonnegative integers (or using two arrays, integers)

2. large key range =⇒ large space e.g. one key of 2256 is bad news.

2 Solutions:

Solution 1 : map key space to integers “Everything is number.” - Pythagoras.

• In Python: hash (object) where object is a number, string, tuple, etc. or object
implementing hash
Misnomer: should be called “prehash”

• Ideally, x = y ⇔ hash(x) = hash (y)

• Python applies some heuristics e.g. hash(‘\∅B’) = 64 = hash(‘\∅\∅C’)

• Object’s key should not change while in table (else cannot find it anymore)

Solution 2 : hashing (verb from ‘hache’ = hatchet, Germanic)

• Reduce universe U of all keys (say, integers) down to reasonable size m for table

• idea: m ≈ n, where n =| K |, K = set of keys in dictionary

3

Lecture 5 Hashing I: Chaining, Hash Functions 6.006 Fall 2009

• hash function h: U → {∅, 1, . . . ,m− 1}

• think of m as a number that fits in a machine word
(if 32 bits, then m can be up to about a billion, so dictionary can be quite large; if
that is not enough can use two words, etc.)

item1 

item3 

problem 

U

U : universe of all possible keys

h(k1)

h(k3)

h(k2) = h(k4)
(collision)

: actual keys K

K

Ø
1

m-1

Figure 2: Mapping keys to a table

• two keys ki, kjεK collide if h(ki) = h(kj)

How do we deal with collisions?

There are two ways

1. Chaining: TODAY

2. Open addressing: NEXT LECTURE

4

Lecture 5 Hashing I: Chaining, Hash Functions 6.006 Fall 2009

Chaining

Linked list of colliding elements in each slot of table

U

U : universe of all possible keys

h(k1)

h(k3)

h(k2) = h(k4)

: actual keys K

K

item3

item1

item2 item4

Figure 3: Chaining in a Hash Table

• Search must go through whole list T[h(key)]

• Worst case: all keys in k hash to same slot =⇒ Θ(n) per operation

Simple Uniform Hashing: an Assumption:

Each key is equally likely to be hashed to any slot of table, independent of where other keys
are hashed.

• let n = number of keys stored in table, m = number of slots in table

• average] keys per slot = n/m =: α — the load factor
Why? Throw n balls into m bins uniformly at random. Average # balls/bin is n

m .

Expected performance of chaining: assuming simple uniform hashing

Expected time to search = O(1 + α)
pay 1 to apply hash function and access slot; then pay α to search the list.

Expected time to insert/delete = O(1 + α)

=⇒ the performance is O(1) if α = O(1) i. e. m = Ω(n).

5

Lecture 5 Hashing I: Chaining, Hash Functions 6.006 Fall 2009

Two Concrete Hash Functions

Division Method: h(k) = kmodm

• k1 and k2 collide when k1 ≡ k2(modm), i. e. when m divides | k1 − k2 |

• fine if keys you store are uniform random (probability of collision=1/m)

• but if keys are x, 2x, 3x, . . . (regularity) and x & m have common divisor d then use
only 1/d-th of the table. Because i · x ≡ (i+ m

d) · x (mod m).
(This is likely if m has a small divisor, e. g. 2)

• if m = 2r then only look at r bits of key!

• Good Practice: m is a prime number & not close to a power of 2 or 10
(to avoid common regularities in keys)

• BUT: Inconvenient to find a prime number; division slow.

Multiplication Method: [Look at figure first]
h(k) = [(a · k) mod 2w]� (w − r), where

• � denotes the “shift right” operator,

• 2r is the table size (= m),

• w the bit-length of the machine words,

• and a is chosen to be an odd integer between 2(w−1) and 2w.

Good Practice: a not too close to 2(w−1) or 2w.
Key Lesson: Multiplication and bit extraction are faster than division.

w

k

ax

r

}

Figure 4: Multiplication Method

6

