
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology November 21, 2007
Professors Ron Rivest and Srini Devadas Handout 17

Problem Set 6
This problem set is due December 6 at 11:59PM.
Solutions should be turned in through the course website in PS or PDF form using LATEX or scanned
handwritten solutions, or they may be handwritten and turned in to a member of the 6.006 course
staff on or before the due date. Hand-drawn diagrams may also be referenced in your LATEX writeup
and turned in at the next day’s recitation.
A template for writing up solutions in LATEX is available on the course website.

Exercises are for extra practice and should not be turned in.
Exercises:

• Exercise 24.1-1 from CLRS.

• Exercise 24.3-2 from CLRS.

• Exercise 24.3-4 from CLRS.

• Exercise 24.5-8 from CLRS.

• Exercise 24.3-6 from CLRS.

1. (18 points) Shortest Paths

Decide whether these statements are True or False. You must briefly justify all your answers
to receive full credit.

(a) (5 points) If some edge weights are negative, the shortest paths from s can be obtained
by adding a constant C to every edge weight, large enough to make all edge weights
nonnegative, and running Dijkstra’s algorithm.

(b) (5 points) Given a graphG with nonnegative edge weights and two nodes s and t, there
exists a polynomial-time algorithm to either find the longest path from s to t or detect
that a cycle on the path is reachable, by negating all the edge weights.

(c) (4 points) Let δ(x, y) be the shortest path distance from a vertex x to another vertex y.
If δ(s, t) = δ(s, u) + δ(u, t), then u is on a shortest path from s to t.

(d) (4 points) Let P be a shortest path from some vertex s to some other vertex t. If the
weight of each edge in the graph is squared, P remains a shortest path from s to t.

2 Handout 17: Problem Set 6

2. (12 points) Critical Edges in Shortest Paths

Let graph G = (V,E). Let w : E → < be a cost function. Assume w(e) ≥ 0 for all e ∈ E.
Let s be a source node. We say that an edge e is upwards critical if by increasing w(e) by
any ε > 0 we increase the distance from s to some vertex v ∈ V . We say that an edge e
is downwards critical if by decreasing w(e) by any ε > 0 (but still having w(e) ≥ 0, i.e.,
by definition if w(e) = 0 then e is not downwards critical) we decrease the distance from s
to some vertex v ∈ V . Give an O(|E| log |V |)-time algorithm to compute the upwards and
downwards critical edges of G.

3. (30 points) U.S. Highways

The Howe & Ser Moving Company is transporting the Caltech Cannon from Caltech’s cam-
pus to MIT’s and wants to do so most efficiently. Fortunately, you have at your disposal
the National Highway Planning Network (NHPN), a 1:100,000 scale network database that
contains line features representing just over 450,000 miles of current and planned highways
in the US. The NHPN consists of interstates, principal arterials, and rural minor arterials.
(Source: http://www.fhwa.dot.gov/planning/nhpn/)

This problem set includes node and link databases from the NHPN, available as files on the
6.006 website. Open nhpn.nod and nhpn.lnk in a text editor to get a sense of how the
data is stored (datadict.txt has a more precise description of the data fields and their
meanings). To save you the trouble of parsing these structures from a file, we have provided
you with a Python module nhpn.py containing code to load the database into memory.
Read the comments there to make sure you understand how to use the nhpn.Loader
interface.

Additionally, we have provided some tools to help you visualize the output from your al-
gorithms. You can use the Visualizer class to produce a KML (Google Earth) file. To
view such a file on Google Maps, place it in a web-accessible location, such as your Athena
Public directory, and then search for its URL on Google Maps.

For this problem, you only need to turn in code. Use the code template we have provided,
which loads the NHPN module with import nhpn, to submit your answers.

(a) (3 points) Write a short procedure node_by_name(nodes, city, state) to
find a city’s location in the set of nodes, given its name and state. Return a Node object
corresponding to the city. Check that it works for a few examples. Note that some
nodes have a description which isn’t solely the city name, e.g. CAMBRIDGE NW or
NORTH CAMBRIDGE. Given a choice of more than one latitude and longitude, choose
the first that appear in the data.
Note that this procedure might be useful in debugging your code later on.

(b) (3 points) Since we are working with a geographical map, where edge weights repre-
sent street lengths, we can use a shortest path algorithm that assumes non-negative edge
weights. Throughout this problem set, ignore the curvature of the Earth, i.e., assume
that the distance between points (x, y) and (x′, y′) is given by

√
(x− x′)2 + (y − y′)2.

Handout 17: Problem Set 6 3

Write a function lat_long_length(node1, node2) to return the length of an
edge between two NHPN nodes.
Hint: You may find the math.hypot function useful.

(c) (24 points) Implement Dijkstra’s algorithm for the shortest path between two vertices
in a graph with non-negative edge weights, using the Node and Link data types.
Your procedure dijkstra_search(nodes, edges, w, s, t) should take
as arguments a graph G (represented as nodes and links), a function w : E(G) → R+

mapping edges (represented as vertex pairs) to their weights, and a source vertex s and
a destination vertex t represented as Node objects.
Your procedure should return a sequence (list) of Nodes representing a path from the
source to the destination.
Hint: What kind of graph representation (e.g. adjacency list, adjacency matrix) seems
most appropriate for this graph? Construct an appropriate representation from the
nodes and edges. Don’t forget that edges are undirected.

