
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology September 25, 2007
Professors Ron Rivest and Srini Devadas Handout 7

Problem Set 2
This problem set is dueOctober 11at11:59PM.
Solutions should be turned in through the course website in PS or PDF form using LaTeX. The
course website has links to a number of editors that are useful for writing in LaTeX.
It is recommended that you download the LaTeX solution template for this problem set which
includes placeholders for solutions.

Exercises are for extra practice and should not be turned in.
Exercises:

1. CLRS 11.2-1

2. CLRS 11.2-2

3. CLRS 11.3-1

4. CLRS 11.3-3

1. Rotating Binary Search Trees

In this problem we’ll explore the rotation operation on binary search trees. As discussed
in class, this operation changes the structure of a binary search tree without affecting the
inorder of the underlying nodes. See CLRS section 13.2 (page 277) for a description of the
operation.

(a) (6 points)Let l(v) denote the number of nodes inv’s left subtree. LetL(T) be the sum
of l(v) over all nodes of the treeT . Show that a right rotation decreasesL(T). Deduce
that it is impossible to do more thanO(n2) consecutive right rotations in ann node
tree, i.e., with NO left rotations mixed in.

(b) (6 points) Show that on ann node left path (a tree where all children are left children)
it is possible to doΩ(n2) consecutive right rotations. (Again, no left rotations allowed.)

2. How Good is this Hash?

The following hash functions are used to hash strings of characters. Describe at least one
strength and one weakness of each of the hash functions. (Don’t try to do a rigorous mathe-
matical analysis of the properties of the functions.)

(a) (6 points)Direct addressing, using the first two bytes of the hash key as an address into
a 65,536-entry hashtable. (Assume all keys are at least two bytes long.)

2 Handout 7: Problem Set 2

(b) (6 points)Add the values of all bytes in the hash key into a single-byte counter, ignoring
overflow. Use the result as an index into a 256-element hash table.

(c) (6 points) Start with a fixed prime number constantp0 and a second small numbers.
Setp := p0. For each bytebi in the hash key, setp := p+(p << s)+bi , wherep << s
means “shiftp left by s bit positions”. Mod the final value ofp by a prime number to
produce the hash code. (Just describe what could be good or bad about this scheme
depending on the values ofp0 ands.)

3. Longest Common Substring

Humans have 23 pairs of chromosomes, while other primates like chimpanzees have 24
pairs. Biologists claim that human chromosome #2 is a fusion of two primate chromosomes
that they call 2a and 2b. We wish to verify this claim by locating long nucleotide chains
shared between the human and primate chromosomes.

We define thelongest common substringof two strings to be the longest contiguous string
that is a substring of both strings e.g. the longest common substring of DEADBEEF and
EA7BEEF is BEEF.1 If there is a tie for longest common substring, we just want to find one
of them.

(a) (2 points)Ben Bitdiddle wrote a python program to find the longest common substring
of two strings. What is the asymptotic running time of his code? Assume|s| = |t| = n.

def longest_substring(s, t):
"Finds the longest substring that occurs in both s and t"
best = ’’
for s_start in range(0, len(s)+1):

for s_end in range(s_start, len(s)+1):
for t_start in range(0, len(t)+1):

for t_end in range(t_start, len(t)+1):
if(s[s_start:s_end] == t[t_start:t_end]):

current = s[s_start:s_end]
if(len(current) > len(best)):

best = current
return best

(b) (2 points) Describe a simple algorithm that finds the longest common substring in
O(n3) time.

(c) (2 points) Describe a simple algorithm that finds the longest common substring in
O(n2 log n) time.

1Do not confuse this with thelongest common subsequence, in which the characters do not need to be contiguous.
The longest common subsequence of DEADBEEF and EA7BEEF is EABEEF.

Handout 7: Problem Set 2 3

(d) (12 points)Describe an algorithm that finds the longest common substring inO(n log n)
time. If you use Rabin-Karp hashing, be sure to pick a specific hash function, describe
why it works well for this problem, and discuss how you will handle collisions.

(e) (12 points) Implement your algorithm from part (d). Be sure to thoroughly comment
your code so the course staff can read it. Some simple test cases are available for
download on the class website.

The human chromosome 2 and the chimp chromosomes 2a and 2b are quite large (over
100,000,000 nucleotides each) so we took the first and last million nucleotides of each
chromosome and put them in separate files. These files are available on the class web-
site, and also in /mit/6.006/dna/

chr2 first 1000000 contains the first million nucleotides of human chromosome
2, andchr2a first 1000000 contains the first million nucleotides of chimpanzee
chromosome 2a. Note: these files contain both uppercase and lowercase letters that are
used by biologists to distinguish between parts of the chromosomes called introns and
extrons.

i. How long is the longest common substring of
chr2 first 1000000 andchr2a first 1000000 ?

ii. How long is the longest common substring of
chr2 first 1000000 andchr2b first 1000000 ?

iii. How long is the longest common substring of
chr2 last 1000000 andchr2a last 1000000 ?

iv. How long is the longest common substring of
chr2 last 1000000 andchr2b last 1000000 ?

When you are finished, submit your code through the class website.

(f) Optional: Make your algorithm run inO(n log k) time, wherek is the length of the
longest common substring.

(g) Optional: Run your algorithm on the entire chromosomes. They are available in
/mit/6.006/dna in compressed form.

