
Fully Convolutional Neural Networks in Julia

Victor Jakubiuk

Fall 2015

18.337: Numerical Computing With Julia
Massachusetts Institute of Technology

1

1 Introduction
The goal of my research in computational neuroscience is to design and im-
plement a high-performance data processing pipeline for electromicroscopy im-
ages (EM). We begin with a 3-dimensional volume, consisting of a number
of 2-dimensional cross-sections (slices) that we want to transform into a 3-
dimensional map of a mammal’s brain (called connectome).

One of the stages in the pipeline, and also the most important for error-free
brain reconstruction, is the probability map generation. A probability map of a
(2-dimensional) slice is a pixel map indicating the probability of each EM input
pixel being a membrane or a non-membrane (extracellular space, or a cell’s inner
body). A value of 1 indicates a membrane, and 0 indicates a non-membrane.
Since the input images are single-channel 8-bit (grayscale), for convenience, we
discretize and normalize the values in probability maps into range 0..255 (see
figure 1).

It may seem like a straightforward task to perform a number of simple oper-
ations (thresholding, contrasting etc.), or even to use the Canny edge detector
to transform a raw EM image into the probability map, but this is unfortu-
nately not the case. The amount of noise and uncertainty prevents these naive
techniques from producing accurate results.

Traditionally, good results have been obtained using random forest classi-
fiers. Currently, state-of-the-art results rely on the use of convolutional neural
networks, which, for performance reasons are mostly implemented in CUDA or
C++, making them inconvenient for quick prototyping or testing.

Not only is Julia a great language for rapid prototyping, with scientific
toolkit capabilities on-par with MATLAB, but it also provides advanced built-
in paralellization primitives, and performs close to C++ speed. Thus, in this
project I extend the Julia’s Mocha.jl library with support for fully-convolutional
neural networks that are used in image segmentation. This enables us to gen-
erate probability maps on multi-core CPUs an order of magnitude faster than
running a window-based prediction on top-performing NVIDIA GPU cards.

2 Current Libraries
As of this writing, Caffe is the most popular, state-of-the-art C++ neural net-
work library developed by the Berkley Vision and Learning Center [4]. It is
specifically designed for practitioners of machine learning and computer vision
(provides MATLAB bindings), both for training and classifying. It supports ex-
ecution both on CPUs and GPUs, and comes with a publicly available repository
of networks, called Model Zoo. Additionally it has a strong support of NVIDIA,
which provided its own training package with a convenient user interface, call
DIGITS [1].

Mocha.jl is its Julia’s counterpart, heavily inspired by and compatible with
Caffe. Mocha supports multiple backends: the pure Julia backend (convenient to
modify), the C++ backend (2𝑥 faster than native Julia’s) and the GPU backend

2

Figure 1: Left: An EM image (1 slice). Right: Its probability map.

(using cuDNN). A major advantage of this library is that it can directly load
Caffe-trained models, enabling my team and I to re-use our existing pre-trained
models. In this work, I have extended the pure Julia backend to support fully-
convolutional networks.

3 Networks theory
A deep neural network (DNN) consists of the input layer, the output layer, and
multiple "hidden" layers of units in between [2]. Each layer takes as the input
the output of the preceding layer, executes its own specific differentiable function
(usually a combination of linear and non-linear function), and passes its output
to the following layer. The advantage of a deep network over a shallow network
is its ability to compose features from lower layers, and thus model more complex
data with fewer units than would be required for a similarly performing shallow
network. Most DNNs are feedforward networks - data passes from the input
towards the output without cycles, forming a directed acyclic graph, though
recurrent neural networks are also known.

The convolutional layer is the core of the CNN. Each layer consists of a set
of filters (kernels) of small spatial dimensions (usually between 3x3 and 19x19).
During the prediction phase (forward pass), each kernel convolves (slides) across
the width and height of the input image, producing a 2D activation map. The
convolution is, essentially, a discrete dot product of the kernel parameters and
the input (in our case, the "central" pixel and its neighborhood).

(𝑓 * 𝑔)[𝑛] =
∞∑︁

𝑚=−∞
𝑓 [𝑚]𝑔[𝑛−𝑚] =

∞∑︁
𝑚=−∞

𝑓 [𝑛−𝑚]𝑔[𝑚]

Intuitively, once the network learns the kernel’s parameters, the kernel will
activate when it "sees" this specific feature at some place in the input (image).
Since multiple kernels are convolved with the input layer, the output consists of

3

Figure 2: Conceptual representation of a deep neural network

a stack activation maps. For example, if the input layer is a volume 1024x1024x3
(such as a 3-channel RGB image), and the square kernel size is 7, then the kernel
will need to learn 7𝑥7𝑥3 = 147 weights. Additionally, sometimes we specify the
stride of the layer, which correspond to the number of pixels skipped during
the convolution. If the stride is 1, then we convolve every input pixel, but for
strides 𝑆 > 1, we conolve every 𝑆𝑡ℎ input pixel. Since the kernel is of size > 1,
we sometime need to pad the input layer to preserve the same dimensions in the
output layer. If the input layer is of size 𝑁x𝑁 , the kernel size is 𝐾, padding 𝑃
and the stride 𝑆, then the output layer will have dimensions:

𝑁𝑜𝑢𝑡𝑝𝑢𝑡 =
𝑁 −𝐾 + 2𝑃

𝑆

Thus, by stacking convolutional layers together, we can reduce the input
layer size, but the number of convolutions (multiplications) is high, and its
usually the most computationally expensive layer.

The pooling layer progressively reduces the dimensions of the input layer,
which is helpful in minimizing the number of parameters and multiplications
required throughout the network, as well as in decreasing overfitting. The most
common pooling function is the max kernel, but averaging or 𝑙2-norm are also
used. The kernels are usually small and, similarly to the convolutional layer,
the stride is also applied. The most popular variations are of 𝐾 = 2, 𝑆 = 2 and
𝐾 = 3, 𝑆 = 2. Thus, for the input layer of dimensions 𝑁𝑖𝑛 x 𝑁𝑖𝑛 x 𝐷𝑖𝑛, kernel
size 𝐾 and stride 𝑆, the output has dimensions:

𝑁𝑜𝑢𝑡 =
𝑁𝑖𝑛 −𝐾

𝑆

𝐷𝑜𝑢𝑡 = 𝐷𝑖𝑛

The fully connected layer (also known as the inner product) has full con-
nections to all activation maps in the previous layer. It simply multiplies the
input by a weight matrix and introduces a bias offset. In some way, the fully

4

Figure 3: An example of the convolutional kernel

connected layer is equivalent to the convolutional layer. Whereas the convolu-
tional layer is connected to a local region in the input, the fully connected layer
is connected to all inputs. One can be easily converted into the other.

4 Theoretical improvement

4.1 Sliding Window Classification
All of our networks are trained on small, labeled patches. Each 2-dimensional
patch classifies exactly one pixel from our training set either as a membrane
or non-membrane. The patch defines a small neighborhood of odd dimensions,
between 19px by 19px and 255px by 255px, to ensure that the middle pixel is
unambiguously discriminated. In a single forward pass through the network, we
provide such a neighborhood (most commonly 49px by 49px) and classify the
central pixel as the output.

However, our EM image slices have dimensions between 1024 by 1024 pixels
to 16,000 by 16,000 pixels, so a single pass of such networks cannot classify each
pixel in the input. Instead, we use the sliding window technique, where a square
window of our network’s input size (ie. 49x49) slides across the entire image. If
the network’s input size is KxK pixels, and the image size is 𝑁𝑖𝑛𝑝𝑢𝑡 x 𝑁𝑖𝑛𝑝𝑢𝑡,
the output image would have dimensions of 𝑁𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑁𝑖𝑛𝑝𝑢𝑡−𝐾+1. To avoid

5

this decrease in size, we pad the image with a border of width ⌊𝐾/2⌋, filled with
0 value, or mirror of the image values.

This results in a significant increase in the number of computations: instead
of being forward propagated through the network once, each pixel in the input
image contributes to 𝐾2 forward computations now.

Figure 4: The sliding window approach - notice (on the high-level) that majority
of computations are repeated.

4.2 Fully Convolutional Networks
This computational blow up quells even the most power GPUs. For example,
on a NVDIA Quadro K6000 with 12GB memory, processing a 1024px by 1024px
grayscale image (1MB) with the sliding window of size 𝐾 = 49 and the AlexNet
network takes a staggering 30 minutes (forward propagation only), and clearly
is not a viable approach.

Looking closer into the computations performed across all (1024−𝐾)2 win-
dows positions, we observe that most of them are repeated, or follow a very sim-
ilar pattern. Using the dynamic programming technique, we can significantly
speed it up, preserve exactly the same output ([3], [5]) and re-use the same
weights from the original (patches-based) classifiers. Specifically, let’s optimize
the convolutional and max-pooling layers.

Let 𝐿+1 by the number of layers in a network. 𝑙 = 0 is the input map, and
the max-pooling and convolutional layers are indexed 1..𝐿. Let 𝑃0 represent the
input image with one or more input maps (for example, equal to the number of
input image’s channels) of width and height 𝑤0 (for simplicity, we assume they
are all square).

If the 𝑙𝑡ℎ layer is a convolution with kernel size 𝑘, then its output 𝑃𝑙 will
be a set of square maps, each of size 𝑤𝑙 = 𝑤𝑙−1 − 𝑘. In general, |𝑃𝑙| ̸= |𝑃𝑙−1,
unless 𝑘 = 1. If the 𝑙𝑡ℎ layer is a max-pooling layer with kernel size 𝑘, and

6

Figure 5: Individual kernels (blue - convolutional, green - max-pooling) are also
repeated within the sliding window.

since max-pooling processes every input map, then we get that |𝑃𝑙| = |𝑃𝑙−1|,
and 𝑤𝑙 = 𝑤𝑙−1/𝑘, assuming that 𝑤𝑙 ≡ 0(mod 𝑘).

With a patch-based (window-sliding) approach, we are assuming that 𝑤0 =
𝑠, the size of the input patch. Instead, let’s take an input image 𝑠 > 𝑤0. Define
𝐹𝑙 as a set of fragments, where each fragment 𝑓 (indexed 1..𝐹𝑙) is associated
with a set of 𝐼𝑓𝑙 extended maps, each of the same size. Define 𝑠𝑓𝑥,𝑙 and 𝑠𝑓𝑦,𝑙 as
width and height of the extended map in 𝐼𝑓𝑙 . Thus, for the 𝑙 = 0, we get |𝐹0| = 1
and 𝑠1𝑥,0 = 𝑠1𝑦,0 = 𝑠.

In the convolution layer 𝑙, the number of fragments is the same as in the
input, 𝐹𝑙 = 𝐹𝑙−1 and each extended map shrinks by the convolutional kernel
size, that is 𝑠𝑓𝑥,𝑙 = 𝑠𝑓𝑥,𝑙−1 − 𝑘 + 1 and 𝑠𝑓𝑦,𝑙 = 𝑠𝑓𝑦,𝑙−1 − 𝑘 + 1. 𝐼𝑓𝑙 is obtained by
applying the convolutional kernel in same way as in the window-sliding method
to preceding map 𝐼𝑓𝑙−1.

The max-pooling layer computes the kernel at 𝑘2 offsets for each fragment,
thus 𝐹𝑙 = 𝑘2𝐹𝑙−1. Specifically, let 𝐼𝑓𝑙−1 be the input extended map, and 𝑂 =
{0, 1, ..., 𝑘−1}×{0, 1, ..., 𝑘−1} the set of offsets. The for each offset (𝑜𝑥, 𝑜𝑦) ∈ 𝑂,
an output extended map 𝐼𝑓𝑙 is created, such that each of its pixels (𝑥𝑜, 𝑦𝑜)

corresponds to the maximum value of all pixels (𝑥, 𝑦) in 𝐼𝑓𝑙−1, such that:

𝑜𝑥 + 𝑘𝑥𝑜 ≤ 𝑥 ≤ 𝑜𝑥 + 𝑘𝑥𝑜 + 𝑘 − 1

𝑜𝑦 + 𝑘𝑦𝑜 ≤ 𝑦 ≤ 𝑜𝑦 + 𝑘𝑦𝑜 + 𝑘 − 1

While the number of output maps is 𝑘2 times the number of input maps,

each output map’s size decreases by a factor of 𝑘: 𝑠𝑓𝑥,𝑙 = ⌊ 𝑠𝑓
′

𝑥,𝑙−1
−𝑜𝑥

𝑘 ⌋ and 𝑠𝑓𝑦,𝑙 =

⌊ 𝑠𝑓
′

𝑦,𝑙−1
−𝑜𝑦

𝑘 ⌋.

7

Lets computer the theoretical speed up in convolutional layers. Let 𝐶𝑙 be the
number of floating point calculation required per layer 𝑙. In the sliding-window
approach, let |𝑃𝑙| be the total number of maps, 𝑠 the size of the image, 𝑤𝑙 the
size of the map, then:

𝐶𝑙 = 𝑠2 · |𝑃𝑙−1| · |𝑃𝑙| · 𝑤2
𝑙 · 𝑘2𝑙 · 2

The extra factor of 2 comes from performing one addition and one multipli-
cation per weight.

In the fully convolutional approach, the number of operations is given by:

𝐶𝑙 = 𝑠𝑥,𝑙 · 𝑠𝑦,𝑙 · |𝑃𝑙−1| · |𝑃𝑙| · 𝐹𝑙 · 𝑘2𝑙 · 2
For example, taking a 7-layer network (a representative network for EM

segmentation) consisting of only convolutional and max-pooling layers, we could
obtain the following theoretical speedup:

5 Julia implementation
One of the strengths of Mocha.jl is its full compatibility with Caffe - in partic-
ular, the ability to re-use their trained models. Caffe comes with an impressive
library called Model Zoo, as well as strong support of NVIDIA and the commu-
nity. I believe it did not make sense to re-invent the wheel and re-implement all
these packages in native Julia. However, having the ability to do the research in
Julia and see the output of my networks in minutes (using fully-convolutional
networks) instead of hours (with the sliding window) is extremely helpful.

Thus, I implemented FullMocha.jl as an extension to Mocha.jl, without
changing most of the syntax and the API, and instead just re-implemented
parts of the Julia backend to support fully-convolutional networks. Thus, the
end-user, can re-use their existing Mocha code, and simply replace the call to
solve(solver, net) with solveFully(solver, net), and immediately benefit from our
algorithmic speedup.

While the sliding window approach is embarrassingly parallelizable, either
with the DArray or the SharedArray, this naive approach does not help with
our data sizes, thus it has not been benchmark here. To take the full advantage
of our multi-core machines, I used the SharredArray to share data (resulting
maps) in between processes. The speedups obtained are on par with our theo-
retical expectations. Additionally, the C++ fully-convolutional library has been

8

Table 1: Fully-convolutional speedup
Name Classification Slowdown Speedup

time (s)
Python/Caffe, GPU 180s 1 1
Python/Caffe, CPU 954s 5.3 0.19x
Julia/Mocha, CPU 1526s 8.5 0.12x
Fully Conv Julia, CPU 47s 0.26 3.8x
Native C++ Fully Conv 3.8s 0.002 47x

benchmark, with the results provided in table 1 (forward-pass on a 100px by
1024px EM image, 7-layer network).

6 Summary
The results above clearly show that using the fully-convolutional approach sig-
nificantly speeds up full image classification. Not only is the Julia’s fully-
convolutional CPU implementation faster than the window-based Julia or Python
implementations, it is also 4𝑥 faster than the GPU implementation running on
top-of-the-line NVIDIA Quadro card. If similar use cases are sufficiently com-
mon, and this performance benefit can be maintained in production-quality
code, this result may effect NVIDIA’s push towards CNN networks.

Additionally, my lab-mate implemented a highly-optimized C++ version
that provides another magnitude in speed-up (due to efficient cache access pat-
terns and no inter-process SharedArray communication). It should be possible
to plug-in this C++ implementation as Mocha’s back-end to get more speed-up.
This is potential further work.

FullMocha.jl currently only supports convolutional and max-pooling layers.
Once other common layers (ReLU, drop-out, fully-connected etc.) are imple-
mented, the library will be open sourced for the benefit of the Julia’s machine
learning community.

9

References
[1] Nvidia digits library. http://devblogs.nvidia.com/parallelforall/easy-multi-

gpu-deep-learning-digits-2.

[2] Yoshua Bengio. Learning deep architectures for ai. Foundations and Trends
in Machine Learning, 2(9):1–127, 2009.

[3] Alessandro Giusti, Dan C. Ciresan, Jonathan Masci, Luca Maria Gam-
bardella, and Jürgen Schmidhuber. Fast image scanning with deep max-
pooling convolutional neural networks. CoRR, abs/1302.1700, 2013.

[4] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Con-
volutional architecture for fast feature embedding. In Proceedings of the
22Nd ACM International Conference on Multimedia, MM ’14, pages 675–
678, New York, NY, USA, 2014. ACM.

[5] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. CVPR (to appear), November 2015.

10

