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Abstract

The latest version of the Lego Mindstorms robotics system is an excel-
lent candidate for the exploration of distributed robotics. I implemented
bindings to the ev3dev operating system, which runs on the Mindstorms
ev3 brick, in Julia. Using those bindings, I constructed a library to per-
form a simple cooperative mapping task on a pair of mobile robots. Due
to the hardware limitations of the ev3 processor, I was not yet able to
run Julia onboard. Instead, I developed a simple server-client architec-
ture using ZeroMQ [1] to allow Julia code to run off-board and control
the Mindstorms robot over WiFi. With this system, I was able to map
simple environments both in serial (with one robot) and in parallel (with
a team of two robots).
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1 Background

The Lego Mindstorms system was first released in 1998, with the Mind-
storms Robotics Invention System [2]. The Mindstorms system consists
of a central computer with input and output ports, and a set of lego-
compatible motors and sensors, as seen in Fig. 1. Lego provides a de-
velopment environment for the Mindstorms computer, in which users can
create programs using a visual block language. There have been a vari-
ety of attempts to introduce more traditional programming languages to
the Mindstorms environment, including Not Quite C [3] and Next Byte
Codes [4]. These efforts have focused on writing and compiling code on
a user’s PC, and then deploying that code to the Mindstorms computer
for execution, since the software on the Mindstorms brick was proprietary
and closed.

(a) The original 1998 Mindstorms
rcx, with sensors and motors at-
tached.

(b) The 2013 Mindstorms ev3,
with motors and sensors.

Figure 1: The Lego Mindstorms computer bricks, with attached peripherals.
Figures reproduced from [5].

Fortunately, the situation has been radically improved with the newest
Lego Mindstorms release, ev3. With ev3, the brick (the box which houses
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the battery, computer, screen, and interface ports) is now a small Linux
computer complete with USB and MicroSD ports. This means that it
is now possible to install and even develop software directly on the ev3
using standard Linux tools. Even better, the ev3 is capable of booting di-
rectly from the MicroSD port, which opens the door for custom operating
systems.

I have built my work on top of ev3dev, a custom Debian Linux dis-
tribution built specifically to run on the ev3. The ev3dev distro makes
communicating with the basic ev3 hardware particularly easy by map-
ping sensors and motors directly to nodes in the filesystem. For example,
instructing a motor to run continuously is as simple as:

echo run-forever > /sys/class/tacho-motor/motor2/command

The developers of ev3dev also provide higher level bindings for C++,
Python, Lua, and node.js. Rather than building Julia wrappers for any
of these language bindings, I have written a new set of bindings directly
on top of the filesystem interface provided by the ev3dev OS.

2 Hardware Interface

2.1 Running Julia on the EV3

Creating a working build of Julia on the ev3 proved to be much more
difficult than anticipated, and I was not able to cross-compile a usable
version. The ev3 has an older ARM926EJ-S processor running the ARMv5

instruction set. Although Julia has been successfully built on other ARM
devices like the Raspberry Pi, the ev3 is more limited in three ways:

1. Instruction set: The ev3 uses the older ARMv5 instruction set. Julia
has been built on systems using ARMv6 and ARMv7, but never yet
on v5 [6].

2. Floating-point support: The ev3 processor has no hardware floating-
point support, and instead relies on the compiler to emulate floating-
point operations in software. Julia does not have built-in support
for so-called “soft floating-point” CPUs.

3. Available RAM: The ev3 has only 64 MB of RAM, which may be
enough to run Julia, but is not enough to compile its dependencies
(particularly LLVM).

Since the resources on the ev3 were limited to a 300 MHz processor and
64 MB of RAM, I was forced to resort to cross-compilation to build Julia.
Using the Brickstrap toolchain [7], I was able to build a complete image of
the ev3dev operating system and compile Julia within Brickstrap but was
never able to run the resulting Julia build without segmentation faults on
startup. More discussion of the specific technical issues encountered can
be seen in the discussion on the julia-dev mailing list in [8].

Despite these setbacks, it is not yet clear that Julia cannot be built
on the ev3. I plan to continue experimenting with Julia, specifically by
attempting to identify and remove components of Julia which are failing
on the ev3.
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2.2 Running Julia Off-board

Mindstorms EV3

Python 
server

Host PC
Julia application

ZeroMQ Socket

(TCP over WiFi)

Filesystem 
abstraction

File-mapped 
motors, sensors

PythonJulia Other

Figure 2: System architecture for controlling the Mindstorms ev3 from a sepa-
rate computer in Julia. ZeroMQ is used as a communication layer over WiFi to
emulate the process of running Julia directly on the ev3

Without a working Julia build on the ev3, I decided to create a mini-
mal system to allow Julia to run on an off-board PC while still communi-
cating with the ev3’s sensors and motors. The easiest way to do this would
be to mount the virtual file system provided by ev3dev on the user’s PC,
using a tool like AFS or SSHFS. I implemented the SSHFS mount, but
experienced very poor reliability, with many commands being dropped or
intermittently ignored. It appeared that the unreliable WiFi connection
to the ev3 made mounting a stable remote filesystem too difficult.

Instead, I chose to use ZeroMQ [1], a robust, high-performance com-
munication library to transmit messages between the ev3 and the host
PC. In all of my experiments, ZeroMQ was remarkably reliable, surviving
network dropouts and various software crashes without issue. The struc-
ture of the system can be seen in Fig. 2. On the ev3, a small Python
program acts as a server using a ZeroMQ socket. The Python server lis-
tens for messages containing one of three commands: r, w, and l to read,
write, or list, respectively, files on the device. Since all motors and sensors
are mapped to files in ev3dev, those commands are all that are needed for
full remote control of the ev3. The Python server also caches the han-
dles to these virtual files in order to allow faster access to the hardware
devices.

In Julia, a few helper classes abstract away the ZeroMQ layer in or-
der to make running off-board similar to running directly on the ev3.
The AbstractNode type represents a file or directory on a local or remote
filesystem. Its subtypes, LocalNode and RemoteNode contain the imple-
mentation details for a particular real file. In the case of a LocalNode,
only the path to the file is stored. A RemoteNode, on the other hand,
stores its file path, the hostname or IP address of the ev3, and a ZeroMQ
socket for communication with that host. The Motor and Sensor types
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require only an AbstractNode to handle reading and writing of data, so
they can be used without regard for whether Julia is being run on the ev3
or on a separate PC.

3 Software

3.1 Low-Level Bindings

At the lowest level of the Julia code that I developed for this project are
the basic input and output bindings for ev3 sensors and motors. Every
motor or sensor provides many possible signals and outputs, including the
current sensor value, motor position, driver name, firmware version, phys-
ical port name, and calibration information. Through the AbstractNode

interface, it is easy to read input data (as strings) and write commands
(as strings), but this presents the user with a complex, unregulated API.
For example, to command a motor to run continuously, a user might write
directly to the abstract node:

write(command_node, "run-forever")

or to read a sensor value, the user might write:

value = parse(Int, read(value_node))

but this allows users to send potentially illegal commands to the mo-
tors, and requires that the user understand the type of data read from the
sensor’s value file.

Instead, to create a safer, easier API, the existing ev3 language bind-
ings create dedicated functions or class methods to read and/or write each
of the available signals. However, this results in a great deal of boilerplate
code. The ev3dev Python bindings resolve the issue by using Liquid, a
templating language, to generate Python code in a separate build step.
But using a build system to generate code removes some of the advantages
of a high-level, interpreted language like Python.

Julia’s metaprogramming support, on the other hand, makes it much
easier to generate all the necessary boilerplate directly within the lan-
guage. I created three macros, @readable, @writeable, and @readwriteable

which take a description of a signal, a category of devices which support
it, and functions to parse outputs and/or validate inputs. For example,
to declare that port name is a readable attribute of all devices, we write:

@readable port_name AbstractDevice as_string

which produces the following code (after some cleanup for readability):

function port_name(dev::AbstractDevice)

as_string(read(dev,"port_name"))

end

Likewise, to declare that command is a readable and writeable attribute
of all Motors, we write:

@readwriteable command Motor as_string x->in(x, valid_commands)
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which produces a pair of functions to read and write commands:

function command(dev::Motor,value)

if !(((x->begin in(x,valid_commands) end))(value))

error("Validation function: ",

(x->begin in(x,valid_commands) end),

" failed with value: ",value)

end

write(dev,"command",string(value))

end

function command(dev::Motor)

as_string(read(dev,"command"))

end

This structure makes writing safe input and output methods very easy
with minimal boilerplate. In the future, as I add support for more detailed
categories of devices, this approach should also make is easy to create only
the appropriate functions for a given device. For example, we may choose
to break up the Motor class into motors which provide position sensors
(and thus have an @readable position) and those which do not. This is
easy to indicate by specializing the class which we pass into the @readable
macro.

4 Collaborative Mapping on the EV3

As a demonstration of the low-level language bindings, I created a simple
parallel mapping project, in which a team of two robots explore the world
simultaneously, gathering point cloud representations of their local areas.

4.1 Hardware Design

The hardware used for the mapping project is shown in Fig. 3. The
design is based on plans provided by Lego for a simple two-wheeled robot,
but with the addition of a rotating ultrasound sensor head, modifications
to the gyroscope attachment, and a guard for the external USB WiFi
module (not shown). The Lego motors for the drive wheels and the head
provide absolute position encoders, and the gyroscope provides a low-drift
orientation estimate. The ultrasound sensor provides an estimate of the
distance from the sensor to the nearest hard surface, although its angular
resolution is limited to approximately 20 degrees.

4.2 Software Design

The software developed for this project can be found in three small soft-
ware projects: Ev3.jl (low-level bindings), Behaviors.jl (finite-state
machine behaviors), and MappingRobots.jl (state-estimation and point-
cloud gathering). All are available on Github at github.com/rdeits/Ev3.jl,
github.com/rdeits/Behaviors.jl, and github.com/rdeits/MappingRobots.jl.
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Figure 3: The Lego robot used for the collaborative mapping project, rendered
using the Lego Digital Designer software [9].
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4.2.1 Finite-State Machine Behaviors

The mapping robot is controlled by a set of behaviors and acts as a finite
state machine. Each behavior consists of an action—a function which can
be applied to the robot’s motors—and a set of transitions which describe
conditions for switching to another behavior. Multiple behaviors can be
active simultaneously, and all active behaviors apply their individual ac-
tions to the robot’s state. Only four behaviors and a start and halt state
are needed to define the entire mapping task, as shown in Fig. 4. The
general framework for defining behaviors, actions, and transitions is im-
plemented in a standalone library, Behaviors.jl, created for this project.

Look left

Look right

Drive forward

Turn right

Head angle 
< -45o 

Head angle 
> 45o 

Ultrasound 
distance  
< 25cm

Ultrasound 
distance  
> 50cm

Halt

Start

Time > 60s Time > 60s

Figure 4: The behaviors used by each robot in order to explore its environment,
implemented in Behaviors.jl. Additional timeout transitions from Look left

and Drive forward to Halt omitted for clarity
.

4.2.2 Mapping

The actual mapping code is a small set of functions built on top of the
low-level bindings and the general behavior engine. At each iteration of
the control loop, the code gathers data from the ultrasound and gyroscope
sensors and records the absolute position of the drive and head rotation
motors. That input is passed into the behavior engine, which resolves
any necessary behavior transitions. The active behaviors then act on the
robot’s motors, causing it to drive and look in the appropriate directions
to avoid obstacles and scan the environment. In addition, the change in
the position of the drive wheels and the orientation of the gyroscope is
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used to update a dead-reckoning estimate of the robot’s current position
in the world.

When the ultrasound detects a nearby object (less than 2 m away), a
single point is added to the robot’s map. Over the course of exploring an
environment, the robot gathers an increasingly dense pointcloud.

4.2.3 Parallel Collaborative Mapping

Using Julia’s built-in support for parallel computing, running multiple
robots simultaneously is not much more difficult than simply running one
robot. In this simple task, the robots need not share any information
as they explore. Instead, each robot is initialized from a known initial
position, and then it returns its entire pointcloud to the master process
when its mapping behavior is complete. A collaborative mapping process,
in which the robots share data to improve their maps and localization,
would be a very interesting future area of work, but was beyond the scope
of this project.

Running two robots in parallel and concatenating their results is as
simple as:

addprocs(2)

@everywhere hostnames = ["192.168.1.27", "192.168.1.25"]

maps = @sync @parallel (vcat) for i = 1:2

robot = construct_robot(hostnames[i])

run_mapping(robot)

end

5 Example Results

5.1 Mapping

Using the complete Julia mapping stack, running on a host PC and com-
municating with the ev3 over ZeroMQ, I was able to produce approximate
maps of a set of artificial environments. The robot, built from the model
shown in Fig. 3 can be seen in Fig. 5.

Using this robot, it was possible to produce very rough maps of a
simple environment constructed of cinderblocks. One such environment
can be seen in Fig. 6. With a second robot, it was possible to map two
environments simultaneously, as seen in Fig. 7.

5.2 Software Performance

The most significant problem with the mapping project is the presence
of the WiFi link inside the control loop. Since the Julia mapping code is
processing sensor data and producing motor commands on the host PC,
it must send and receive data over WiFi at every control loop iteration.
If the WiFi link is interrupted, then all control over the ev3 robot is lost.

In practice, running one robot at a time generally worked well, but
adding a second robot resulted in frequent, temporary, losses of contact.
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Figure 5: The robot exploring an environment made of cinderblocks.

Figure 6: Demonstration of the MappingRobots.jl package. The robot spent
120 seconds traveling around an environment made of cinderblocks. Each red
point represents a single ultrasound sensor return, plotted at its x-y position
in the world using the robot’s estimated pose. The green path represents the
robot’s estimated trajectory through the world. On the right, the points have
been manually overlaid (and adjusted for perspective) on top of a photo of the
environment.
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Figure 7: Demonstration of collaborative mapping. Two robots worked simul-
taneously to produce the pointcloud shown here. The red points are ultrasound
sensor returns, and the green paths are the robots’ trajectories. The section of
the left path indicated by the arrow shows a temporary loss of communication
between the host PC and the ev3 robot, during which no data about the robot’s
position was received.
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Fortunately, the ZeroMQ layer was always able to re-establish connectivity
without interrupting the task, but a total loss of motor control for several
seconds is a substantial problem in a robotics application. The results of
one such WiFi dropout can be seen in the very sparse data representing
the left robot’s estimated path in Fig. 7. In order to make more complex
tasks possible, it will be critical to find a way to eliminate the WiFi link
from the control loop, as will be discussed in Sect. 6.1.

6 Future Work

My most immediate future work will be to clean up and robustify the Julia
code developed for this project so that others can use it. One important
consideration is security of the Python server. As currently implemented,
the server allows arbitrary files to be written and read on the ev3 re-
motely by anyone on the local network. A simple way to improve this
will be to restrict the server to only access the virtual files corresponding
to the motors and sensors, not any other (potentially sensitive) files on
the device. This will still allow any user on the user’s home network to
remotely control the ev3, but not to damage the operating system.

6.1 Eliminating the WiFi Link

As discussed in Sect. 5.2, the fact that every command and piece of sensor
data must travel over the WiFi link is a major limitation. There are a
number of possibilities that we might explore to address this.

6.1.1 Move Julia onto the EV3

The most obvious way to remove the WiFi link is to remove or modify
enough components of Julia to allow it to run directly on the ev3. With
the Julia mapping code running onboard, the only communication over
WiFi will be high-level, low-frequency commands, such as an instruction
to start executing a mapping task.

6.1.2 Mount a Raspberry Pi Onboard

If a working Julia build cannot be created for the ev3, there may be
another way to achieve similar performance. The Raspberry Pi is a series
of small, low-cost computers which run standard Linux desktop operating
systems. The Raspberry Pi Zero, for example, is sold for $5, but has
512 MB of RAM, compared to the 64 MB on the ev3, and a more modern
ARMv6 architecture. There has been some success building working Julia
versions for the Raspberry Pi, so it should be possible to run the mapping
code on the Pi. The Pi could then be mounted directly on the robot, and
could communicate with the ev3 over USB, eliminating the unreliable
WiFi link.
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6.1.3 Replace the EV3 entirely

Instead of adding a Raspberry Pi to the ev3 robot, it might also be possi-
ble to replace the ev3 brick entirely. The BrickPi is a custom device which
allows Lego motors and sensors to be controlled directly by a Raspberry
Pi over USB [10]. This involves some additional hardware, but might be
a promising direction, since the Raspberry Pi is much more powerful than
the ev3 computer.

6.1.4 Robot Operating System

Another possible direction to explore is the use of ROS, the Robot Oper-
ating System. ROS is a set of libraries for common robotics applications,
including visualization, algorithms, and controls. One of the most basic
elements of the ROS stack is the message-passing system, which allows
different processes (potentially on different computers) to send and receive
messages. It would certainly be possibly to replace the ZeroMQ layer with
ROS messages over WiFi. This is unlikely to improve reliability, since the
WiFi link would still be part of the control loop, but using a standard-
ized library would make the code more likely to be compatible with other
tools. There has been some very limited success getting ROS to run on
the ev3, but as it is a very large library (hundreds of megabytes or more)
and only fully supported on Ubuntu Linux, I chose not to explore it for
this project.

7 Conclusion

This project demonstrated a complete solution for the use of Julia to con-
trol Lego Mindstorms robots, along with an application to demonstrate
Julia’s excellent parallel computing facilities. While the success was lim-
ited by the intermittent communication losses over the WiFi link between
the host PC and the ev3, it was still possible to control two robots simul-
taneously from the same master process. In the future, I hope to eliminate
the problematic WiFi link and create more robust robotics applications.
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