
Parallel	genomic	alignment	and	clustering	tools	in	Julia	
Omar	Abudayyeh		
18.337	Parallel	Computing	
December	15th,	2015	
	
1.	Abstract	
	
	 In	this	project,	I	implement	in	Julia	two	important	bioinformatics	algorithms:	1)	Smith-
Waterman	alignment	and	2)	Markov	clustering.	For	both	algorithms,	serial	and	parallel	versions	of	
the	algorithms	are	implemented	and	compared	in	performance	on	distributed	and	shared	memory	
systems	up	to	40	cores.	Because	of	unique	data	dependencies	in	Smith-Waterman,	a	parallel	
algorithm	can	compute	different	sections	of	the	alignment	in	parallel	efficiently	using	Julia’s	
dynamic	task	scheduler.	For	Markov	clustering,	I	implement	a	form	of	parallel	multiplication	using	
spawned	tasks	on	slices	of	the	input	matrices.	For	both	algorithms,	remarkable	performance	
speedups	are	achieved	using	parallel	implementations	in	Julia.		
	
2.	Introduction	
	
2.1	Background	
	
	 As	the	amount	of	data	generated	from	sequencing	increases,	it	is	necessary	to	have	accurate	
algorithms	that	are	scalable	and	fast1,2.	Protein	and	sequencing	databases	have	swelled	in	size	in	
recent	years.	For	instance,	there	are	now	more	than	23,000	bacterial	genomes	which	are	sequenced	
and	publically	available	on	NCBI	(http://www.ncbi.nlm.nih.gov/).	With	so	much	data	readily	
available,	algorithms	are	needed	to	infer	new	relationships	between	genomic	and	protein	
sequences.	The	standard	method	for	identifying	new	proteins	depends	on	previously	classified	and	
analyzed	proteins,	as	proteins	can	be	grouped	by	similarities	in	their	primary	sequences	and	
structure.	It	is	common	for	proteins	that	are	homologous,	or	evolutionary	similar,	to	have	strong	
conservation	of	certain	residues	across	key	protein	domains.	Therefore,	it	has	become	common	
practice	for	scientists	to	align	new	protein	sequences	against	large	databases	of	sequences	in	order	
to	determine	the	structure	and	function	of	new	proteins.	Alignments	can	thus	be	used	to	cluster	
sequences	into	groups	of	related	proteins,	allowing	scientists	to	then	generate	hypotheses	about	the	
potential	function	of	novel	proteins.	These	tools	have	been	fundamental	in	the	analysis	of	genomic	
and	protein	networks	in	many	diseases,	such	as	cancer	and	Alzheimer’s.	However,	with	sequencing	
technologies	rapidly	advancing,	vast	amounts	of	data	sit	unprocessed	due	to	long	analysis	times.	It	
is	critical	to	have	algorithms	that	are	rapidly	able	to	analyze	large	datasets.	Julia	offers	a	platform	
for	implementing	bioinformatics	algorithms	due	to	its	combination	of	high	performance	computing	
with	high-level	usability,	allowing	for	rapid	implementation	of	parallel	algorithms.	
	
	 The	goal	of	this	project	is	to	build	a	scalable	set	of	alignment	and	clustering	tools	for	genomic	
sequences.	Typically,	biologists	who	are	confronted	with	a	new	dataset	of	sequences	will	compute	
all	pairwise	alignment	scores	and	then	use	a	clustering	algorithm	to	understand	the	important	
relationships	and	identify	similar	sequences.	Therefore,	I	aimed	in	this	project	to	design	and	
implement	two	key	algorithms	for	genomic	sequence	analysis:	1)	Smith-Waterman	alignment	for	
determining	sequence	similarity	and	2)	Markov	clustering	of	nodes	in	biological	networks.	These	

two	algorithms	are	important	for	inferring	relationships	in	large	datasets	and	are	part	of	the	same	
workflow	for	clustering	proteins.	Because	performance	of	these	approaches	is	critical	for	large	
datasets,	I	am	also	presenting	in	this	report	the	implementations	of	both	serial	and	parallel	versions	
and	show	the	performance	comparison	of	these	different	approaches.	The	implementations	will	use	
key	aspects	of	Julia,	including	its	shared	memory	methods	and	scheduling	libraries.		
	
2.2	Sequence	alignment	algorithms	
	
	 A	central	problem	in	alignment	algorithms	is	the	tradeoff	between	accuracy	and	efficiency.	
Needleman-Wunsch3	and	Smith-Waterman4	are	two	alignment	algorithms	that	were	originally	
designed	to	have	high	accuracy	and	to	find	the	most	optimal	alignment	between	two	sequences,	but	
were	computationally	expensive.	New	algorithms,	such	as	FASTA	and	BLAST,	tried	to	ameliorate	
the	high	computational	cost	of	these	older	algorithms	but	at	the	sacrifice	of	accuracy1.	However,	
Smith-Waterman	is	still	an	important	algorithm	because	many	newer	algorithms	depend	on	it	to	
help	refine	the	alignment	and	improve	accuracy.	Therefore,	developing	a	fast	and	scalable	version	is	
broadly	useful	for	many	existing	alignment	tools.		
	
	 The	Smith-Waterman	algorithm	was	developed	in	1981	as	a	tool	for	computing	optimal	local	
alignment4.	Instead	of	determining	the	entire	alignment	of	two	input	sequences,	Smith-Waterman	
focuses	on	finding	the	most	similar	region	between	two	sequences,	which	is	biologically	meaningful	
since	the	ends	of	proteins	tend	to	be	non-conserved	due	to	high	mutation	rates	at	their	ends.		
	
	 As	a	pairwise	sequence	algorithm,	Smith-Waterman	uses	a	scoring	function,	F,	which	assigns	
different	scores	to	various	alignments	of	any	two	input	sequences.	The	function	is	designed	such	
that	the	optimal	alignment	emerges	with	the	highest	score.	The	algorithm	takes	advantage	of	the	
fact	that	the	sum	of	the	scores	of	aligning	two	subsequences	equals	the	total	alignment	score.	This	
allows	for	an	iterative	calculation	of	the	optimal	score	by	growing	the	alignment	from	the	beginning	
of	each	input.	This	implies	that	the	score	at	residue	i	in	sequence	x	and	residue	j	in	sequence	y	is	the	
sum	of	the	score	of	residue	i	and	j	and	the	score	of	subsequences	preceding	these	residues.	The	
score	of	any	two	residues	i	and	j	is	based	on	one	of	three	possibilities:	1)	residues	i	and	j	are	a	match	
or	mismatch,	2)	residue	i	aligns	to	a	gap,	or	3)	residue	j	aligns	to	a	gap	and	this	may	mathematically	
be	described	as	follows:	
	

1)	𝐹 𝑖, 𝑗 = 	𝑠 𝑖, 𝑗 + 𝐹 𝑖 − 1, 𝑗 − 1 where	𝑠(𝑖, 𝑗) = 𝑚		if	𝑥5 = 𝑦5;	𝑠 𝑖, 𝑗 = −𝑠	otherwise	
	

2)	𝑥5	aligns	to	a	gap	and	"𝐹(𝑖, 𝑗) 	= 	−𝑑	 + 	𝐹(𝑖 − 1, 𝑗)"		
	
3)	𝑦5	aligns	to	a	gap	and	"𝐹(𝑖, 𝑗) 	= 	−𝑑	 + 	𝐹(𝑖, 𝑗 − 1)"	

	
where	m	is	the	matching	score,	s	is	the	mismatch	penalty,	and	d	is	the	penalty	for	a	gap.	By	taking	
the	maximum	of	these	three	possibilities	at	any	given	position	(Fig.	1a),	we	can	determine	the	
alignment	score	for	all	possible	subsequences	as:		
	

𝐹 𝑖, 𝑗 = 𝑠𝑐𝑜𝑟𝑒 𝑖, 𝑗 + 𝑚𝑎𝑥

𝐹(𝑖 − 1, 𝑗 − 1)
𝐹(𝑖 − 1, 𝑗)
𝐹 𝑖, 𝑗 − 1

0

	

	
	 In	order	to	filter	out	regions	of	dissimilarity	and	to	focus	on	optical	local	alignments,	it	is	
important	to	never	let	an	alignment	score	become	negative.	Upon	determining	the	optimal	
alignment,	if	a	zero	is	encountered,	the	local	alignment	is	therefore	terminated.	This	allows	the	
algorithm	to	only	focus	on	regions	with	high	similarity	and	zeros	therefore	partition	areas	of	high	
similarity.	The	algorithm	begins	by	creating	a	matrix	that	is	mxn	in	size	where	m	is	the	length	of	
sequence	1	and	n	is	the	length	of	sequence	2	(Fig.	1b).	Thus,	horizontal	and	vertical	axes	correspond	
to	each	of	the	input	sequences.	Each	cell	(i,j)	will	be	filled	with	the	score	F(i,j).	The	matrix	is	
initialized	with	a	top	most	row	(0,j)	and	left	most	column	(i,0)	of	zeros	.	The	algorithm	starts	at	cell	
(1,1)	and	begins	filling	the	matrix	from	left	to	right	and	then	top	to	bottom.	Once	the	matrix	is	
complete,	a	traceback	is	performed	by	identifying	the	maximum	cell	in	the	entire	matrix	and	then	
following	the	maximum	path	from	right	to	left	and	bottom	to	top	until	a	zero	is	encountered.	At	this	
point,	the	alignment	terminates.	As	shown	in	Fig.	1b,	the	alignment	matrix	is	generated	for	two	
input	sequences	(ATGCATGCATGC	and	ATGGGCATG)	with	a	match	score	of	2	and	a	mismatch/gap	
score	of	-1.	The	optimal	alignment	path	is	shown	in	red	by	tracing	back	from	13	to	0	and	the	optimal	
local	alignment	is	output	as	shown	in	Fig.	1c.	As	can	be	clearly	seen	in	the	traceback	path,	when	the	
path	travels	horizontally	there	is	a	gap	in	sequence	y,	and	when	it	travels	vertically	there	is	a	gap	in	
sequence	x.	When	the	path	travels	diagonally,	it	is	accepting	the	alignment	as	a	match	or	mismatch.		

	
Figure	1:	a)	Each	cell’s	score	is	determined	by	finding	the	maximum	of	the	three	cells	adjacent	to	it	
(top,	left,	and	diagonally).	b)	An	example	score	matrix	for	the	alignment	of	two	sequences	as	shown.	
c)	The	alignment	discovered	from	tracing	back	(red)	the	score	matrix	in	(b).		
	
	 This	dynamic	programming	algorithm	has	an	overall	runtime	cost	of	O(MN)	due	to	the	cost	
of	traversing	every	element	of	the	score	matrix.		
	

2.3	Genomic	clustering	algorithms	
	
	 Although	many	clustering	algorithms	exist,	recently	the	Markov	clustering	algorithm	(MCL),	
which	was	originally	developed	as	a	graph-clustering	tool,	has	been	adopted	for	a	wide	range	of	
biological	network	applications5.	It	has	been	particularly	successful	for	identifying	families	of	
interacting	protein	in	large	protein	networks.	Through	many	applications,	the	MCL	algorithm	has	
been	shown	to	be	effective,	fast,	and	quite	robust,	making	it	an	attractive	choice	for	biological	
interaction	networks.	It	is	based	on	two	simple	operations,	expansion	and	inflation,	applied	to	the	
Markov	matrix,	M,	of	the	associated	network	graph,	G.	The	algorithm	requires	a	normalized	Markov	
matrix,	which	is	generated	by	normalizing	all	the	columns	of	the	adjacency	matrix	of	G.	The	
clustering	then	begins	by	iteratively	performing	expansion	and	inflation	operations	on	the	
normalized	M	matrix.	Expansion	is	used	to	stimulate	flow	throughout	the	graphs.	Every	expansion	
operation	performs	a	random	walk.	After	enough	iterations,	the	flow	equilibrates	and	the	structure	
of	the	graph	emerges.	Inflation	operations	help	promote	this	process	by	strengthening	flow	where	it	
is	strong	and	weakening	it	where	it	is	weak.	Eventually,	convergence	is	achieved	where	regions	of	
clusters	are	marked	by	strong	flow	and	are	separated	from	other	clusters	by	regions	of	no	flow.		
	
	 MCL	expansion	is	performed	by	taking	the	pth	power	of	the	matrix	M	as	follows:	
		

𝐸𝑥𝑝 𝑀 = 𝑀L	
	
By	default,	p=2.	The	MCL	inflation	operation	takes	a	matrix	𝑀 ∈ ℝ,𝑀 ≥ 0	and	a	power	𝑟 ∈ ℝ, 𝑟 > 0.	

The	inflation	operator	ΓR: ℝTUV ℝTUV	to	M	with	power	coefficient	r	as	described	below:		

ΓR𝑀 5W =
𝑀5W

R

𝑀XW
RT

XYZ
; 𝑖 = 1…𝑚, 𝑗 = 1…𝑛.	

This	operation	essentially	performs	the	Hadamard	product	of	the	matrix	M	to	the	power	r	and	
automatically	normalizes	for	the	next	round	of	expansion.	As	the	algorithm	iterates	between	
expansion	and	inflation,	an	idempotent	matrix	will	eventually	be	resolved	with	clusters	within	it.	
The	algorithm	terminates	when	a	given	chaos	threshold	is	reached	and	no	significant	changes	
within	the	matrix	occur	during	subsequent	expansions.	The	chaos	is	defined	as:	
	

𝑐ℎ𝑎𝑜𝑠 = max ΓR𝑀 −min ΓR𝑀 .	
	
When	chaos	is	~0,	the	algorithm	terminates	and	analyzes	the	underlying	structure	of	the	graph	to	
output	clusters.		
	
	 The	cost	of	MCL	is	O(N3)	where	N	is	the	number	of	nodes	or	vertices	in	the	network	graph.	
This	cost	is	due	to	the	multiplication	of	two	matrices	of	dimension	N.	The	inflation	step	only	takes	
O(N2).	So,	most	of	the	cost	and	speed	up	benefits	can	be	achieved	by	improving	the	expansion	step.	
While	convergence	is	not	proven,	experimentally	it	is	shown	to	be	between	~10-100	steps	and	this	
result	has	been	very	robust.		

2.4	Parallelization	of	Smith-Waterman		
	

	 Improved	performance	of	the	Smith-Waterman	algorithm	can	be	achieved	through	
parallelization,	which	can	be	accomplished	by	taking	advantage	of	the	unique	data	dependencies	in	
the	DP	score	matrix	(Fig.	2a)6,7.	On	a	single	processor,	the	cells	of	the	matrix	are	evaluated	
sequentially,	but	a	parallel	implementation	can	efficiently	compute	independent	cells	from	the	
score	table	in	parallel.	The	score	function	of	the	algorithm	is	structured	such	that	each	cell	only	
depends	on	the	cell	above	it,	below	it,	and	to	the	upper-left.	This	means	that	cells	from	each	anti-
diagonal	can	be	computed	in	parallel	(up	to	min(m,n))	since	they	are	all	independent	of	each	other,	
allowing	for	the	entire	score	matrix	to	be	computed	in	m+n-1	passes	by	processing	each	anti-
diagonal	sequentially6.	Because	the	smaller	anti-diagonals	will	not	efficiently	use	all	the	available	
workers,	there	can	be	stall	equal	to	p(p-1),	where	p	is	the	number	of	processes	available	(Fig.	2b).	
Because	Julia	has	significant	overhead	in	submitting	work	to	processes,	the	gain	in	parallelization	
may	be	offset	by	the	communication	and	overhead	time.	This	usually	means	that	the	work	each	
process	is	given	must	be	computationally	complex	enough	to	make	the	overhead	negligible.	Since	
computing	each	cell	is	a	simple	calculation,	it	may	be	necessary	to	split	the	DP	matrix	into	a	grid	of	
many	cells	(e.g.	grid	units	of	50x50	cells).	Then,	these	grid	units	can	be	processed	by	parallel	
computing	the	anti-diagonals	of	grid	units,	where	each	process	will	then	receive	a	50x50	chunk	of	
cells	to	compute.	This	approach	was	also	taken	as	a	precaution	for	the	original	approach	not	
resulting	in	a	significant	speed	enhancement	due	to	overhead.		
	

	
Figure	2:	a)	Depiction	of	the	data	dependencies	in	the	Smith-Waterman	score	matrix.	Arrows	
indicate	dependencies.	Cells	colored	with	the	same	color	are	independent	of	each	other	(termed	
anti-diagonal)	and	can	be	computed	in	parallel.	b)	Geometrical	representation	of	loading	processors	
p	with	anti-diagonal	i.	Red	blocks	indicate	cells	from	anti-diagonals	that	are	sent	to	a	given	
processor	p.	The	grey	colored	cells	indicate	inefficient	use	of	available	processors	due	to	the	smaller	
anti-diagonals.	Images	adapted	from	Liu	et	al.6	
	
2.5	Parallelization	of	Markov	clustering	
	
	 Parallelization	of	Markov	clustering	can	be	accomplished	by	parallelizing	the	expansion	
operator,	which	is	the	most	costly	step	of	MCL.	This	can	be	accomplished	by	splitting	the	work	of	
matrix	multiplication	across	multiple	workers8.	The	parallelization	of	matrix	multiplication	𝑀a =
𝑀Z𝑀a	is	performed	by	assigning	worker	i	to	perform	multiplication	of	𝑀Zagainst	a	slice	of	j	columns	
from	𝑀a.	The	resulting	m	x	j	matrices	are	concatenated	together	to	form	the	final	matrix	product.	
The	reduction	can	be	performed	with	distributed	memory	by	communicating	the	position	of	the	
slices	from	the	original	matrix	and	organizing	the	results	accordingly.	Using	shared	memory,	this	

can	be	performed	with	less	overhead	by	directly	updating	the	matrix	cells	in	a	pre-allocated	empty	
matrix.		
	
3.	Genomic	alignment	and	clustering	in	Julia	
	
3.1	Features	of	Julia	
	
The	Julia	programming	language	offers	convenient	features	for	scheduling	tasks	in	parallel.	The	
spawn	macro	allows	for	dynamic	scheduling	of	parallel	activity	by	automatically	sending	work	to	
available	workers.	Additionally,	Julia	allows	for	the	synchronous	parallelization	of	tasks,	which	is	
important	for	the	Smith-Waterman	algorithm,	as	the	anti-diagonals	must	be	sequentially	processed.	
Another	useful	aspect	of	Julia	is	its	integration	of	methods	to	deal	with	shared	memory	systems.	
Because	these	bioinformatics	algorithms	tend	to	deal	with	large	matrices,	shared	memory	data	
structures	allow	for	faster	computation	since	there	is	no	communication	overhead.	Due	to	the	high-
level	nature	of	the	language,	it	is	quite	easy	to	implement	a	variety	of	parallel	designs	for	these	two	
algorithms	with	distributed	and	shared	memory	data.		
	
3.2	Smith-Waterman	implementation	
	
Serial	version	
	
	 The	standard	implementation	for	Smith-Waterman	is	to	iteratively	fill	in	each	row	of	the	DP	
score	matrix	from	left	to	right	(Fig.	3).	The	pseudocode	shown	in	Fig.	3	searches	for	the	maximum	
score	of	the	three	possible	alignments	prior	to	the	current	cell	and	then	saves	the	best	score.	It	also	
keeps	track	of	which	of	these	options	is	the	maximum	in	order	to	perform	the	traceback	at	the	end.		
	

	

Figure	3:	Pseudocode	depicting	how	to	perform	serial	Smith-Waterman.	“matrix”	is	the	DP	score	
matrix	and	“path”	is	the	matrix	keeping	track	of	the	paths	followed	from	subalignment	to	
subalignment.		
	
At	the	end	of	the	algorithm,	the	matrix	and	path	tables	are	output	such	that	the	traceback	can	be	
performed	to	output	the	optimal	alignment.			
	
Parallel	version	
	
	 Dynamic	and	synchronous	scheduling	can	be	achieved	in	Julia	with	the	sync	and	async	
macros.	Async	allows	for	a	local	process	to	send	out	all	work	to	the	worker	processes	while	sync	
forces	the	local	process	to	wait	until	all	tasks	are	completed	within	a	given	“sync”	block.	This	
feature	is	incredibly	important	for	the	parallel	implementation	of	Smith-Waterman	as	each	anti-
diagonal	can	only	be	computed	when	the	diagonal	before	it	is	finished.	This	offers	a	powerful	
mechanism	to	send	each	anti-diagonal	out	to	workers	iteratively	for	processing.	Additionally,	
because	Julia	has	shared	memory	matrices	readily	available,	it	becomes	easy	to	update	cells	of	the	
matrix	with	little	communication	overhead	between	workers	and	the	local	process.	

A	pseudocode	parallel	version	modifying	the	serial	version	is	shown	in	Fig.	4.	The	main	flow	
of	this	approach	is	to	iterate	through	each	anti-diagonal	and	send	each	cell	through	a	helper	
function	get_score()	to	each	worker.	The	results	of	each	worker	are	then	updated	within	the	worker	
using	shared	memory	matrices.		

	
Figure	4:	Parallel	implementation	of	Smith-Waterman.	Shown	is	the	first	of	two	for	loops	that	
sends	the	first	half	of	anti-diagonals	to	workers.		
	
	 An	additional	modification	to	this	parallel	algorithm	to	enhance	performance	is	to	split	the	
matrix	into	a	grid.	An	issue	with	Julia	is	that	there	is	significant	overhead	involved	in	sending	tasks	
to	the	workers	and	if	the	computations	made	on	each	process	are	relatively	simple	compared	to	the	
overhead	cost,	then	it	is	not	useful	to	parallelize	as	the	overhead	cost	dominates.	Therefore,	in	case	

overhead	becomes	an	issue,	the	Smith-Waterman	algorithm	can	be	enhanced	by	splitting	the	DP	
matrix	into	a	grid	with	pxp	units,	where	p	is	the	number	of	workers	available.	This	will	involve	
sending	grid	units	of	size	r	x	r	cells,	where	𝑟 = 𝑛/𝑝	and	the	DP	matrix	is	of	size	nxn.	In	this	approach,	
anti-diagonals	of	grid	units	are	sent	to	each	worker	and	thus	each	worker	performs	more	work	for	
each	anti-diagonal	iteration.	Pseudocode	of	this	implementation	is	shown	in	Fig.	5.		
	

	
Figure	5:	Parallel	grid	implementation	pseudocode	of	Smith-Waterman.	Startx/starty	and	
endx/endy	denote	the	two	corners	of	each	grid	unit	that	is	sent	to	a	single	worker.		
	
3.3	Markov	clustering	implementation	
	
Serial	version	
	
	 A	serial	version	of	Markov	clustering	essentially	performs	expansion	and	inflation	
operations	iteratively	until	some	convergence	threshold	is	met.	The	pseudocode	outlined	in	Fig.	6	
shows	an	example	of	how	MCL	can	be	implemented.	Once	convergence	of	the	Markov	matrix	is	met,	
the	underlying	structure	can	be	analyzed	for	clusters,	which	are	essentially	denoted	through	non-
zero	edges.		
	

	

Figure	6:	Pseudocode	for	serial	version	of	MCL.	M	is	the	Markov	matrix;	p	is	the	expansion	power;	r	
is	the	inflation	parameter;	maxl	is	the	max	number	of	iterations	allowed;	mult	is	a	constant	added	to	
the	diagonal	to	add	self-loops	to	each	node	and	promote	seeding	of	clusters.		
	
Parallel	version	
	
	 Although	Julia	matrix	multiplication	is	already	parallel	through	the	BLAS	library,	further	
speed	up	can	be	achieved	by	using	some	number	of	workers	for	further	subdividing	the	work	of	
matrix	multiplication.	Julia’s	@spawn	macro	offers	the	ability	to	compute	jobs	in	parallel	and	to	
wait	for	these	jobs	to	complete	when	performing	work	that	depends	on	the	results	of	each	remote	
call.	In	this	manner,	the	expansion	operation	can	be	parallelized	and	inflation	can	be	delayed	until	
all	chunks	of	the	matrix	multiplication	are	computed	in	parallel	and	reduced	to	the	final	product	
(for	the	distributed	case).	Both	a	distributed	and	shared	memory	version	of	this	algorithm	will	be	
implemented	and	compared.	The	shared	version	updates	matrix	cells	within	each	worker	and	each	
matrix	multiply	is	kept	in	sync	using	the	sync	and	async	macros.	A	pseudocode	example	of	the	
shared	memory	parallelized	matrix	multiplication	is	shown	in	Fig.	7	
	
		

	
Figure	7:	Pseudocode	for	parallelized	matrix	multiplication	using	shared	matrices.		
	
	
4.	Performance	results	
	
4.1	Testing	Conditions	
	
	 For	testing	performance	of	my	code,	I	used	the	80-core	julia.mit.edu	shared	memory	
machine	with	both	randomized	matrices	and	real	biological	data.	For	both	algorithms,	I	tested	a	
variety	of	dataset	sizes	and	a	range	of	cores.	To	ensure	optimal	performance,	run	times	were	
recorded	after	initially	compiling	the	Julia	code	since	subsequent	executions	usually	compute	faster.	
Additionally,	distributed	and	shared	memory	versions	of	the	algorithms	are	tested.	All	raw	data	can	
be	found	in	the	Appendix.	The	most	interesting	results	are	presented	in	the	following	sections.		
	 	

4.2	Parallelized	Smith-Waterman	optimization	
	
	 Given	the	communication	overhead	of	sending	work	to	processors,	it	might	be	expected	that	
the	parallel	version	of	Smith-Waterman	sending	a	single	cell	to	each	worker	would	be	slower	than	
the	serial	version.	Given	this	consideration,	only	shared	memory	arrays	were	used	to	minimize	
communication	workloads.	In	order	to	test	the	algorithm’s	performance,	random	DNA	sequences	of	
lengths	40,	200,	1000,	3000,	5000,	and	7500	were	generated.	While	Smith-Waterman	can	be	used	
for	protein	sequence	alignment,	for	testing	purposes	it	is	easier	to	use	DNA	sequences	since	the	
protein	version	of	the	algorithm	has	a	more	complex	scoring	system	for	matches	versus	
mismatches.	As	expected,	the	parallel	versions	using	16	or	32	cores	were	three	to	four	orders	of	
magnitude	slower	(Fig.	8).	While	the	parallel	versions	failed	to	improve	performance,	the	Julia	code	
itself	was	2.5x	faster	than	the	Python	code.	This	experimentation	with	Smith-Waterman	
implementation	reveals	the	power	of	Julia	to	generate	faster	runtimes	simply	by	porting	code	over	
from	other	languages,	such	as	Python.		
	

	
Figure	8:	Performance	of	parallel	Smith-Waterman	implementation	using	random	DNA	sequences	
of	varied	lengths.	SP16	and	SP32	refer	to	parallelization	on	16	and	32	cores,	respectively.	The	
Python	and	Julia	executions	are	performed	with	the	serial	version	of	the	algorithm.		
	
	 It	was	clear	that	communication	overhead	was	the	issue	with	the	original	parallel	
implementation	of	Smith-Waterman.	Every	remote	call	was	significantly	slowing	the	code	since	the	
computation	of	each	task	was	so	little	and	it	was	thus	faster	to	compute	in	serial.	I,	therefore,	
decided	to	implement	the	grid	version	of	Smith-Waterman	in	order	to	send	larger	chunks	of	the	DP	
matrix	to	each	worker.	For	testing,	I	used	sequences	of	length	40,	200,	1000,	3000,	5000,	7500,	
10000,	and	15000	and	the	following	numbers	of	cores:	2,	4,	5,	10,	20,	and	40.	After	implementing	
this	new	algorithm,	it	was	clear	that	performance	was	much	improved	for	larger	sequence	inputs	
(Fig.	9).	For	sequences	less	than	1000nt,	the	serial	version	was	superior	regardless	of	the	cores	
used	for	parallel	computation.	Because	parallel	computation	only	becomes	efficient	when	the	work	
being	sent	to	each	processor	is	sufficiently	large	that	overhead	becomes	negligible,	it	is	
understandable	that	performance	of	the	parallel	grid	version	correlates	with	sequence	input	length.	
Above	sequence	lengths	of	1000nt,	a	maximum	speedup	of	6.3x	is	achieved.	A	couple	interesting	
trends	emerge	from	the	performance	curves	in	Fig.	9.	Two	workers	seem	to	be	optimal	for	most	

0 100 200 300 400 500
0.0

0.5

200

400

600

Input Sequence Length (nt)

Ti
m

e
(s

)

Python
Julia
SP16
SP32

conditions,	suggesting	that	communication	overhead	is	still	an	issue	for	most	lengths	tested.	
Eventually,	as	very	long	sequence	inputs	are	used,	the	number	of	processes	does	not	matter	and	the	
speed	up	converges	to	~4x.	Thus,	to	perform	Smith-Waterman	alignment	optimally,	it	would	make	
sense	to	operate	the	serial	version	for	sequence	inputs	of	length	less	than	1000nt	and	the	parallel	
grid	algorithm	for	longer	sequences.		
	

	
	
Figure	9:	Performance	of	the	parallel	grid	implementation	of	the	Smith-Waterman	algorithm.	
Runtimes	are	compared	to	the	serial	Julia	execution.		
	
4.3	Parallelized	Markov	clustering	optimization	
	
	 Improving	the	expansion	operations	in	MCL	involves	parallelizing	matrix	multiplication.	The	
implemented	algorithm	was	tested	on	random	nxn	matrices	(meaning	n	nodes	in	the	graph)	of	sizes	
n	equal	to	1600,	3200,	4800,	and	6400	and	the	following	numbers	of	cores:	2,	4,	8,	16,	32,	and	40.	
The	distributed	and	shared	versions	of	the	algorithm	were	tested	using	regular	or	shared	arrays,	
respectively.	While	the	distributed	version	achieved	a	maximum	speed	up	of	5.6x,	the	shared	
algorithm	achieved	an	optimal	26x	speedup	(Fig.	10).	This	difference	is	likely	due	to	the	work	
required	in	shuttling	chunks	of	data	back	and	forth	to	the	workers.	It	is	also	clear	that	the	algorithm	
scales	well	with	larger	datasets	as	the	speed	up	is	quite	improved	for	larger	matrices.	
	

0 5000 10000 15000
0

2

4

6

Length of Inputs (nt)

S
pe

ed
 u

p

P2
P4
P5
P10
P20
P40

	
Figure	10:	Performance	of	parallelized	matrix	multiplication	on	a	varying	number	of	cores.	
	
	 With	parallel	matrix	multiplication	optimized,	I	implemented	two	versions	of	MCL	for	
distributed	and	shared	arrays.		The	algorithm	was	tested	on	matrices	of	dimensional	sizes	of	
n=1600,	2400,	and	3200	(Fig.	11).	The	MCP	performance	for	shared	arrays	scaled	linearly	with	the	
number	of	cores	and	the	same	speed	ups	were	observed	regardless	of	dataset	size.	The	equivalence	
in	speed	up	for	the	MCL	despite	differences	in	the	matrix	multiplication	runtimes	is	due	to	longer	
convergence	times	for	the	larger	matrices.	The	distributed	version	of	MCL	performed	better	for	
larger	datasets	and	displayed	no	improvement	in	performance	beyond	30	cores.	This	is	likely	due	to	
the	need	for	more	communication	work	as	the	number	of	workers	increases.		
	

	
Figure	11:	The	performance	of	MCL	on	a	varying	number	of	cores.	
	
	
4.4	Markov	clustering	on	sparse	protein	network	
	
	 I	decided	to	perform	a	final	test	of	the	MCL	algorithm	using	a	real	biological	dataset	in	order	
to	test	performance	in	a	“real	world”	scenario	and	to	evaluate	accuracy.	Costanzo	et.	al.	generated	
an	interaction	map	of	5.4	million	gene-gene	pairs	from	the	budding	yeast,	Saccharomyces	cerevisiae,	
represented	by	a	network	of	3,886	nodes	(proteins)	and	15,100,996	edges	(correlations	between	
proteins	as	denoted	in	the	interaction	dataset)9.	Actual	biological	networks	are	much	sparser	than	
the	dense	random	networks	tested	in	the	previous	sections.	This	particular	dataset	has	a	sparsity	of	

0 10 20 30 40
0

10

20

30

S
pe

ed
 u

p

#Cores

P-1600
P-3200
P-4800
P-6400
SP-1600
SP-3200
SP-4800
SP-6400

Cores

S
pe

ed
 u

p

0 10 20 30 40 50
0

5

10

15

20

25
P-1600
P-2400
P-3200
SP-1600
SP-2400
SP-3200

26%.	When	the	algorithm	was	applied	to	this	dataset,	the	performance	observed	scales	linearly	for	
the	shared	version	and	saturated	as	before	at	30	cores	for	the	distributed	version.	For	the	shared	
memory	algorithm,	a	maximum	speedup	of	27x	was	achieved,	similar	to	what	I	saw	for	the	random	
test	cases.	Additionally,	the	accuracy	of	the	algorithm	was	sufficiently	high	as	714	clusters	were	
generated	with	an	average	size	of	6.45	proteins,	similar	to	what	Costanzo	et	al	found.9	
	
	

	
Figure	12:	The	performance	of	MCL	on	a	biological	network	from	Costanzo	et	al.		
	
5.	Future	Directions	
	
5.1	Stacking	of	Smith-Waterman	
	
	 In	this	project,	I	implemented	a	faster	parallel	version	of	Smith-Waterman	optimized	for	the	
alignment	of	a	single	sequence	against	another	sequence.	The	representation	of	worker	load	can	be	
geometrically	represented	as	a	parallelogram	(Fig.	13a)6,	since	smaller	anti-diagonals	will	not	
adequately	use	all	available	processes.	This	waste	in	stalled	processors	can	be	ameliorated	by	filling	
the	available	processors	with	work	from	the	alignment	of	other	queries	against	the	target	sequence.	
Usually,	biologists	will	attempt	to	align	many	inputs	against	a	target	sequence	or	database.	
Therefore,	given	the	many	comparisons	that	must	be	made,	an	even	faster	Smith-Waterman	
algorithm	can	be	developed	for	large	database	queries	by	interweaving	the	anti-diagonals	from	
different	queries	(Fig.	13b).	It	would	be	worth	investigating	how	well	a	stacked	Smith-Waterman	
would	be	perform	using	the	Julia	language.		

0 10 20 30 40
0

10

20

30

S
pe

ed
 u

p

Cores

P
SharedP

	
Figure	13:	a)	The	geometrical	representation	of	tasks	sent	to	each	processor	pi	from	anti-diagonal	i.	
b)	Stacking	of	worker	loads	between	different	sequence	alignments	to	more	optimally	use	all	
available	workers.	Imaged	adapted	from	Liu	et	al.6	
	

Additional	improvements	in	performance	can	likely	be	achieved	by	using	GPU	libraries	
available	in	Julia	to	perform	the	alignment	computations	on	the	GPU.		

	
5.2	Other	alignment	algorithms	
	
	 Further	work	should	focus	on	extending	the	parallelism	to	other	alignment	algorithms.	
Smith-Waterman	is	usually	used	in	conjunction	with	other	less	accurate	algorithms	such	as	FASTA.	
FASTA	is	a	k-mer	based	alignment	tool	that	uses	hashing	to	improve	speed	at	the	expense	of	
accuracy1,2.	Modern	day	alignment	tools	will	combine	this	k-mer	hashing	search	approach	to	
quickly	identify	local	regions	of	similarity	and	then	Smith-Waterman	to	perform	more	accurate	
local	alignments.	Because	these	pipelines	are	generally	used	on	many	input	sequences	and	large	
target	sequence	databases,	they	can	certainly	be	improved	using	the	parallel	approaches	described	
in	this	work.	
	
5.3	Markov	clustering	using	GPU		
	
	 A	few	more	optimizations	can	be	made	to	the	Markov	clustering	approach	described	here.	As	
biological	datasets	continue	to	grow	in	size,	it	will	be	advantageous	to	reduce	the	memory	required	
of	these	algorithms.	Usually,	biological	networks	are	quite	sparse	(20-30%)	since	most	proteins	
only	interact	with	a	small	subset	of	other	proteins.	Memory	improvements	can	be	achieved	by	using	
a	sparse	matrix	format	to	represent	the	network	matrices,	such	as	the	sparse	column	format.	I	
briefly	explored	using	Julia’s	Compressed	Sparse	Columns	(CSC)	format	for	representing	these	
matrices	and	used	a	parallel	sparse	shared	memory	matrix	package	to	perform	the	computations.	
Unfortunately,	this	version	was	quite	slower	perhaps	due	to	the	overhead	of	having	to	compute	a	
single	column	and	row	multiplication	at	a	time	and	thus	the	large	number	of	worker	remote	calls	
that	have	to	be	made,	which	increases	the	overhead	time.	Recently,	an	algorithm	for	MCL	was	
published	that	adopted	a	sparse	column	matrix	version	of	MCL	for	the	GPU	using	CUDA.8	It	might	be	

worth	implementing	this	approach	using	Julia’s	CUDA	package	to	further	improve	both	
performance	and	memory	usage.			
	
5.4	Code	optimization	
	
	 Certain	optimizations	in	the	code	are	needed	for	further	development	of	these	packages.	
Particularly,	Smith-Waterman	was	designed	and	implemented	for	DNA	sequences	specifically,	but	
protein	alignment	is	equally	as	important.	Further	iterations	should	add	support	for	protein	
sequences	using	more	complex	scoring	functions	such	as	BLOSUM.	Additionally,	further	
experimentation	with	the	MCL	package	is	necessary	to	understand	how	and	to	what	extent	
changing	the	parameters	of	expansion	and	inflation	affect	performance.		
	
5.5	Availability	of	package	
	
Code	can	be	found	on	github:	https://github.com/oabudayyeh/JuliaAlignmentToolbox/.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

6.	References	
1.	 Li,	H.	&	Homer,	N.	A	survey	of	sequence	alignment	algorithms	for	next-generation	

sequencing.	Brief	Bioinform	11,	473-483	(2010).	
2.	 Flicek,	P.	&	Birney,	E.	Sense	from	sequence	reads:	methods	for	alignment	and	assembly.	Nat	

Methods	6,	S6-S12	(2009).	
3.	 Needleman,	S.B.	&	Wunsch,	C.D.	A	general	method	applicable	to	the	search	for	similarities	in	

the	amino	acid	sequence	of	two	proteins.	J	Mol	Biol	48,	443-453	(1970).	
4.	 Smith,	T.F.	&	Waterman,	M.S.	Comparison	of	Biosequences.	Advances	in	Applied	Mathematics	

2,	482-489	(1981).	
5.	 Enright,	A.J.,	Van	Dongen,	S.	&	Ouzounis,	C.A.	An	efficient	algorithm	for	large-scale	detection	

of	protein	families.	Nucleic	Acids	Res	30,	1575-1584	(2002).	
6.	 Liu,	Y.,	Huang,	W.,	Johnson,	J.	&	Vaidya,	S.	GPU	accelerated	Smith-Waterman.	Lect	Notes	

Comput	Sc	3994,	188-195	(2006).	
7.	 Liao,	H.Y.,	Yin,	M.L.	&	Cheng,	Y.	A	parallel	implementation	of	the	Smith-Waterman	algorithm	

for	massive	sequences	searching.	Conf	Proc	IEEE	Eng	Med	Biol	Soc	4,	2817-2820	(2004).	
8.	 Bustamam,	A.,	Burrage,	K.	&	Hamilton,	N.A.	Fast	parallel	Markov	clustering	in	bioinformatics	

using	massively	parallel	computing	on	GPU	with	CUDA	and	ELLPACK-R	sparse	format.	
IEEE/ACM	Trans	Comput	Biol	Bioinform	9,	679-692	(2012).	

9.	 Costanzo,	M.,	et	al.	The	genetic	landscape	of	a	cell.	Science	327,	425-431	(2010).	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

7.		Appendix	
	
Table	1:	Run	times	for	parallel	matrix	multiplication	serially	in	Python	and	Julia	(on	one	thread	and	multithreaded)	and	
in	parallel	using	distributed	memory	(P)	and	shared	memory	(SP)	on	2,	4,	8,	16,	32,	and	40	cores.	
Size	 Python	

(1	thrd)	
Julia		 Julia	

(1	
thrd)	

P2	 P4	 P8	 P16	 P32	 P40	 SP2	 SP4	 SP8	 SP16	 SP32	 SP40	

1600	 1.09	 0.77	 1.64	 1.99	 1.92	 2.38	 4.38	 8.96	 11.23	 1.17	 0.60	 0.45	 0.65	 0.42	 0.75	

3200	 8.62	 0.66	 8.67	 4.68	 2.91	 1.78	 1.90	 9.90	 3.37	 4.56	 2.62	 1.31	 0.82	 0.56	 0.55	

4800	 28.91	 1.88	 28.87	 15.28	 8.30	 4.98	 7.25	 5.99	 10.15	 15.22	 7.71	 4.11	 2.48	 1.88	 1.62	

6400	 68.99	 4.45	 68.93	 35.66	 19.40	 11.32	 9.57	 11.25	 12.13	 35.80	 18.03	 9.62	 5.38	 3.33	 2.82	

	
	
Table	2:	Run	times	for	MCL	using	random	datasets	serially	in	Python	and	Julia	(on	one	thread	and	multithreaded)	and	in	
parallel	using	distributed	memory	(P)	and	shared	memory	(SP)	on	8,	16,	32,	and	40	cores.	
Size	 Python	 Python	

(1	thrd)	
Julia	 Julia	

(1	
thrd)	

P8	 P16	 P32	 P40	 SP8	 SP16	 SP32	 SP40	

1600	 9.88	 331	 28.2	 397	 51.2	 34.5	 35.3	 40.8	 67.1	 39.2	 21.2	 19.4	
2400	 60.93	 1042	 83.3	 1155	 156.3	 94.3	 78.8	 83.6	 240.1	 116.5	 69.9	 52.8	
3200	 203.3	 2605	 203.7	 2771	 351.1	 223.6	 157.8	 155.6	 531.1	 301.2	 139.0	 134.2	
	
Table	3:	MCL	run	times	using	real	data	set	from	Costanzo	et	al.	serially	in	Julia	(on	one	thread	and	multithreaded)	and	in	
parallel	using	distributed	memory	(P)	and	shared	memory	(SP)	on	8,	16,	32,	and	40	cores.		
	 Julia	(1	

thrd)	
Julia	
(multi)	

P8	 P16	 P32	 P40	 SP8	 SP16	 SP32	 SP40	

Time	(s)	 5453	 485.3	 739.2	 427.8	 310.4	 301.5	 724.68	 393.1	 231.8	 199.7	
Further	results	from	MCL	on	the	Costanzo	et	al.	dataset.		
Average	cluster/family	size:	6.45	
Clusters	with	greater	than	5	members:	229	
Singlets:	253	
Total	#	of	clusters:	714	
	
Table	4:	Smith	Watermann	run	time	results	implemented	serially	in	Python	and	Julia	and	in	parallel	on	16	(P16)	and	32	
(P32)	cores.		
Size	(nt)	 Python	 Julia	 SP16	 SP32	

10	 0.0003	 0.00012	 8.597	 7.535	
100	 0.0238	 0.0712	 24.783	 44.283	
500	 0.5273	 0.3177	 345.3	 598.5	

	
Table	5:	Smith	Watermann	parallel	grid	implementation	run	times	for	serial	Julia	and	in	parallel	on	2,	4,	5,	10,	20,	and	
40	cores.		
Size	(nt)	 Julia	

	
P2	 P4	 P5	 P10	 P20	 P40	

40	 0.067	 3.34	 3.16	 5.15	 6.93	 13.48	 30.27	
200	 0.10	 1.88	 3.18	 3.76	 6.95	 13.34	 30.36	
1000	 1.18	 2.04	 3.20	 3.83	 7.04	 13.38	 29.34	
3000	 9.56	 3.08	 4.19	 4.75	 7.89	 14.00	 30.49	
5000	 26.03	 5.36	 6.78	 6.97	 9.60	 15.57	 31.72	
7500	 64.80	 11.15	 10.28	 13.00	 14.82	 19.50	 33.80	

10000	 102.36	 22.19	 23.90	 22.13	 27.32	 26.26	 38.78	
15000	 234.59	 51.72	 55.23	 55.26	 64.54	 62.86	 57.77	

	
	
	

