Allgnment and clustering tools
for sequence analysis

Omar Abudayyeh
18.337 Presentation
December 9, 2015

lNntroduction

e Sequence comparison is critical for inferring biological relationships
within large datasets of DNA or protein sequences

 Next generation seqguencing has generated too much data

* Need for fast and accurate tools for comparing DNA or protein
sequences

Avallable seguence comparison tools

Similarity Metrics Clustering

edit distance greedy (UCLUST, CD-HIT)

dynamic programming graph (markov clustering)
(needleman-wunsch, smith
waterman) vector (k-means)

k-tuple (FASTA, BLAST) hierarchical

Outline

- 1. Smith-waterman local alignment
- Serial and parallel implementations in Julia

- 2. Markov clustering
- Parallelized linear algebra implementation in Julia

1. Smith-waterman local alignment

Introduction to local Smith-waterman alignment

* Traditional string matching is not useful for comparing DNA or
orotein sequences due to evolutionary events

* Traditional alignment is assessed through cost function (e.g. edit
distance) or stochastic similarity scores (e.g. ML through HMM)

* [hese approaches all involve dynamic programming, but this can
be costly for large problems ~ O(MN)

o SMmith-waterman is highly amenable to parallelism due to specitic
data dependencies in the matrix

Smith-waterman algorithm

* N X M Integer matrix, where N and M are sequence lengths

1. Initialize matrix
H(z,0)=0,0<71<m
H{(0,7)=0,0<j7<n

-1 t

j

O-H4H>P>P0O0WOGOGOAH> >
cNeoNeoNeoNeoNoNoNoNeoNe!
—

2. Fill Matrix S ME-106-1] | MEG-1]0)
0 \‘ 2

H(i:—1,7—1)+ s(a;,b;) Match/Mismatch L L
max;-1{H(1 — k,j) + Wi} Deletion e == S
max;-1{H (7,7 — 1) + W} Insertion

H(7,7) = max

MGj-1]
3. lraceback Path

Hopt = max(H[1,]])
traceback(Hopt)

Smith-waterman example

Nu
G

<L
GA
= O
< O
ONO
=
<<
1l
— QO
O O
O O
v o)

AT GCATGZ CATGOC

A

O
O
=
<
O
O
=
<
O
O
=
<

A

Z v = =
Z === =
Z o sSs a S —
Z =0 0 0= = —
Z o = = —
Z === =
Z o sSs r aaa SsS —
Z = ' = =

Z o =S == |
Z o = -
Z = = —
Zz = I

L £ ZL Z Z Z Z Z Z Z
< A FFO0CO0CO0COACSKEFEGC
OO N WLSTN~NOOo N
OO0 m®owws~LD
O~ ®mmmuwo - L
O~ < < © oo o ©
O O N WO W X M~ O o
OO MmO WWwWST © o N
O~~~ mMmm<x ~ L o
O AN — < < < 1O 0 ~ ©
O O N LW S © W < W0
O OM O W S M AN M O
O~ Y M A — O — < ™
O QN — O O OO AN — O
O OO O OO0 O O O O
< A FFO0O0CO0COACSKEFEGC

Smith-waterman example

O 6
= =
<L <
%C
O
< |
O O
= =
<< <<

Nu
G

<L
GA
= O
< O
ONO
=
<<
1l
— QO
O O
O O
v o)

AT GCATGZ CATGOC

A

O
O
=
<
O
O
=
<
O
O
=
<

A

Z v = =
Z 1 S —35 1 =
A TS T T T T SR
Z = 0 S = —
Z v == —
Z =z =
Z o sSs raaa SsS —
Z = o= =

Z4 B B R 1
Z = -
Z = = —
Z = o =

L ZL ZL L Z ZL Z Z Z Z
< A FFO0CO0CO0COACSKEFEGC
OO N WLSTN~NOOo N
OO mwowwws~L D
O+~ < mm®»Mwao-ZS
ON T~ < ¥ © o o O
O O N IO IO S N~ © o
OO MmO WL < O o N
O~ mmom<x ~L o
O N — < ~ & 10 0 ~ ©
O O N LW S © W < W0
O O M ®O®ILW S M AN M O
O~ < MO — O — < ™
ON— O O OO AN — O
O OO O OO0 O O O O
< A FFO0O0CO0COACSKEFEGC

Parallel Implementatlon of SW

1

it 1

S,
2
T

3

T/T

9 K NN L

t‘.2“‘—3"—4*—5‘

|

SETRETRY Ry

e Sequentially assign anti-diagonal elements to processers

e With p=min(m,n) processors,

[l
O U A W N = O

PPPP

DP table can be computed in (m + n -1) passes

 Some Inefficiency due to processor stalling equal to p(p-1)

Liu et al. ICCS 2006

Parallel Implementation of SW

for | = 2:col
jcol = |
Irow = 2
@sync begin
count = 1

w = workers()
while jcol > 1 && irow <row + 1
@async remotecall_wait(w[count],shared_get_score!,arguments)

jcol -= 1
Irow += 1
count += 1
end
end

end

 Implemented this with normal arrays and shared arrays on a 40 core machine

Performance of SW

600
== Python
400 === Julia
- SP16
0 =
=
= 0.5
0.0 *
0 100 200 300 400 500

Input Sequence Length (nt)

e Parallel SW is ~1,880x slower, but Julia serial SW is ~2.5x faster than python

Outlook

Overhead too large for parallelism, but serial
algorithm in Julia outperforms python P, P, P, P,

Try GPU computation with more cores (Julia CUDA
and OpenCL)

O 1A W N = O
|
@

Eliminate processor stalling by interleaving requests

Parallelize other database alignments, such as BLAST

Add support for protein alignment

2. Markov clustering

Introduction to markov clustering

 Markov clustering algorithm originally developed for graph
clustering and is now a key tool within bioinformatics

o Useful for determining clusters in networks (e.g. protein interactions
can help identify genes in disease such as cancer)

* With next generation sequencing technologies, there are vast
amounts of data

 Performance and scalability issues are limiting factors

Van Dongen, S. A cluster algorithm for graphs, Information Systems

Markov-clustering overview

 Markov clustering is a simulation of random walks

o After enough walks, flows in the graph become evident and
correspond to clusters

Markov-clustering Algorithm

Two step process: where M is the transition matrix of a weighted,
undirected graph

1. EXpansion

E‘I])(A[) = A[p.

2. Inflation

T

(I'y M)i = (M;;)"/ Z(ﬂ[kj)r; 1= 1...m, 75 = 1.]n.

k=1

Markov-clustering Algorithm

Algorithm:

1. Start with transition matrix

2. Normalize the matrix

3. Expand by taking the pth power of the matrix

4. Inflate by taking the inflation of the matrix with parameter r
5. Repeat steps 3 and 4 until steady state Is reached

6. Analyze matrix for clusters

\Vlarkov clustering examDIe

\

1/4 1/ 1/2 1/
/l | | 1) >
1/4 1/3 0 1/3
Powef of 2‘ 1 1 0 I /4 0 12 0
Inflation of 2 i (1) é (1) \1/4 /3 0 1/3/
@ N y
~ N
94 .33 .50 .33 C/ 1/3 v 1/3\ /1/ 1/3 V- 1/3\
.03 .33 -- .33 v 13 0 1/3 % 13 0 13
0l - 50 -- 4 0 0 i 0 0
KB 33 - 33/ M 130 13) (% 130 173,
- % i
1 .33 .50 .33 - B ~
- 33 -- 33 35 .31 .38 .31
—- = 50 -- 23 31 .13 .31
- 33 - 33 19 .08 .38 .08
_ =/ (23 31.13 31,

Parallelizing markov clustering

« MCL is O(N3), where N is number of vertices
e Cost due to matrix multiplication (inflation can be done in O(N?2))

 Because algorithm is just basic linear algebra operations, it's highly
amenable for parallelization

* Implemented parallelized version of expansion and compared
performance

Bustamam et al. [IEEE 2010 HPC.

MCL algorithm parallelized expansion

@everywhere function mymatmul!(n,w,sa,sb,sc,p)
range = 1+(w-1) * div(n,p) : (w) * div(n,p)
scl:,range] = sal:,:] * sbl:,range]

end

function sharedmult(n,p,sa,sb,sc)
@sync begin
for (i,w) in enumerate(workers())
@async remotecall_wait(w, mymatmul!, n, i, sa, sb, sc,p)
end
ena
return sc
end

Performance of parallel matrix multiplication

30 -o— P-1600

-=- P-3200

—=— P-4800

20 : == P-6400
® . —— SP-1600
o -0~ SP-3200
/) -3~ SP-4800

== SP-6400

Speed up

10

é‘,
0 10 20 30 40
#Cores

0

o Shared memory improves performance by 25x

* Near linear scaling is observed

Shared memory MCL has superior performance

25
P-1600

P-2400
P-3200
SP-1600
SP-2400
SP-3200

20

15

10

B RN

5

0
0 10 20 30 40 50

Cores

o Shared memory MCL improves performance by 21x and has linear
scalable performance

The genetic landscape of a cell

o Dataset created from an
interaction map of 5.4 million
gene-gene pairs from the

2N pudding yeast,

Ly vesicle Saccharomyces cerevisiae

transport

b Xl

YT . .-
AL o
= i oS
®

L

e .
‘. ° L J
' L J
. .
e . .
b -
e -
/.
\ P T
N
ll)
\ ° L N
d e , o » % -
y . ’ ¥ 5
- A 1 1
» A~ LN P . o
o . hS p-
» L g~ ! & 3
Rt e L]
- '. .
i N . (! !
z T 3
» 1 ¢
" b ¥ 3
- v \ 1 y . - ,\
g L
..) v
e »
. * R ” ’
. " -.
i\v e 4
-{' 3 ‘,. P
Y YR
S > - -
\»
AN)
) .Y
. »
S0 B
- . %
Fa /SN
| R
} -
P | . o r

oy
Chromatin & % °+*,
transcription "

e 3886 nodes and 15,100,996
edges

S ¢ ~26% sparsity

*ee *ea ’? ;'{" "Cell polarity &
*... x NE 2 morphogenesis

DNA replication
& repair

Costanzo et al, Science, 2010

MCL successtully clusters 3,886 proteins

30
-— P

= Sharedp AVerage cluster size: 6.45 proteins

20 Clusters with >5 members: 229
Singlet Clusters: 253
Total # of clusters: 714

Speed up

10

0 10 20 30 40
Cores

 MCL shared achieved 27x speed increase and linear scaling

Outlook

Parallelizing in Julia gave superior performance of MCL
Even better performance was observed on a real, sparse dataset
Develop a version for GPU computation with Julia

Implement a sparse version in order to reduce memory usage (such
as using CSC format in Julia)

Ihank you

Questions?

