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lNntroduction

e Sequence comparison is critical for inferring biological relationships
within large datasets of DNA or protein sequences

 Next generation seqguencing has generated too much data

* Need for fast and accurate tools for comparing DNA or protein
sequences



Avallable seguence comparison tools

Similarity Metrics Clustering

edit distance greedy (UCLUST, CD-HIT)

dynamic programming graph (markov clustering)
(needleman-wunsch, smith
waterman) vector (k-means)

k-tuple (FASTA, BLAST) hierarchical




Outline

- 1. Smith-waterman local alignment
- Serial and parallel implementations in Julia

- 2. Markov clustering
- Parallelized linear algebra implementation in Julia



1. Smith-waterman local alignment



Introduction to local Smith-waterman alignment

* Traditional string matching is not useful for comparing DNA or
orotein sequences due to evolutionary events

* Traditional alignment is assessed through cost function (e.g. edit
distance) or stochastic similarity scores (e.g. ML through HMM)

* [hese approaches all involve dynamic programming, but this can
be costly for large problems ~ O(MN)

o SMmith-waterman is highly amenable to parallelism due to specitic
data dependencies in the matrix



Smith-waterman algorithm

* N X M Integer matrix, where N and M are sequence lengths

1. Initialize matrix
H(z,0)=0,0<71<m
H{(0,7)=0,0<j7<n
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3. lraceback Path

Hopt = max(H[1,]])
traceback(Hopt)




Smith-waterman example
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Smith-waterman example
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Parallel Implementatlon of SW
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e Sequentially assign anti-diagonal elements to processers

e With p=min(m,n) processors,
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PPPP

DP table can be computed in (m + n -1 ) passes

 Some Inefficiency due to processor stalling equal to p(p-1)

Liu et al. ICCS 2006



Parallel Implementation of SW

for | = 2:col
jcol = |
Irow = 2
@sync begin
count = 1

w = workers()
while jcol > 1 && irow <row + 1
@async remotecall_wait(w[count],shared_get_score!,arguments)

jcol -= 1
Irow += 1
count += 1
end
end

end

 Implemented this with normal arrays and shared arrays on a 40 core machine



Performance of SW
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e Parallel SW is ~1,880x slower, but Julia serial SW is ~2.5x faster than python



Outlook

Overhead too large for parallelism, but serial
algorithm in Julia outperforms python P, P, P, P,

Try GPU computation with more cores (Julia CUDA
and OpenCL)

O 1A W N = O
|
@

Eliminate processor stalling by interleaving requests

Parallelize other database alignments, such as BLAST

Add support for protein alignment



2. Markov clustering



Introduction to markov clustering

 Markov clustering algorithm originally developed for graph
clustering and is now a key tool within bioinformatics

o Useful for determining clusters in networks (e.g. protein interactions
can help identify genes in disease such as cancer)

* With next generation sequencing technologies, there are vast
amounts of data

 Performance and scalability issues are limiting factors

Van Dongen, S. A cluster algorithm for graphs, Information Systems



Markov-clustering overview

 Markov clustering is a simulation of random walks

o After enough walks, flows in the graph become evident and
correspond to clusters




Markov-clustering Algorithm

Two step process: where M is the transition matrix of a weighted,
undirected graph

1. EXpansion

E‘I])(A[) = A[p.

2. Inflation

T

(I'y M )i = (M;;)"/ Z(ﬂ[kj)r; 1= 1...m, 75 = 1.]n.

k=1



Markov-clustering Algorithm

Algorithm:

1. Start with transition matrix

2. Normalize the matrix

3. Expand by taking the pth power of the matrix

4. Inflate by taking the inflation of the matrix with parameter r
5. Repeat steps 3 and 4 until steady state Is reached

6. Analyze matrix for clusters



\Vlarkov clustering examDIe
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Parallelizing markov clustering

« MCL is O(N3), where N is number of vertices
e Cost due to matrix multiplication (inflation can be done in O(N?2) )

 Because algorithm is just basic linear algebra operations, it's highly
amenable for parallelization

* Implemented parallelized version of expansion and compared
performance

Bustamam et al. [IEEE 2010 HPC.



MCL algorithm parallelized expansion

@everywhere function mymatmul!(n,w,sa,sb,sc,p)
range = 1+(w-1) * div(n,p) : (w) * div(n,p)
scl:,range] = sal:,:] * sbl:,range]

end

function sharedmult(n,p,sa,sb,sc)
@sync begin
for (i,w) in enumerate(workers())
@async remotecall_wait(w, mymatmul!, n, i, sa, sb, sc,p)
end
ena
return sc
end



Performance of parallel matrix multiplication
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o Shared memory improves performance by 25x

* Near linear scaling is observed



Shared memory MCL has superior performance
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o Shared memory MCL improves performance by 21x and has linear
scalable performance



The genetic landscape of a cell

o Dataset created from an
interaction map of 5.4 million
gene-gene pairs from the

2N pudding yeast,

Ly vesicle Saccharomyces cerevisiae
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MCL successtully clusters 3,886 proteins
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20 Clusters with >5 members: 229
Singlet Clusters: 253
Total # of clusters: 714

Speed up
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 MCL shared achieved 27x speed increase and linear scaling



Outlook

Parallelizing in Julia gave superior performance of MCL
Even better performance was observed on a real, sparse dataset
Develop a version for GPU computation with Julia

Implement a sparse version in order to reduce memory usage (such
as using CSC format in Julia)



Ihank you

Questions?



