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Introduction

• Sequence comparison is critical for inferring biological relationships 
within large datasets of DNA or protein sequences 

• Next generation sequencing has generated too much data 

• Need for fast and accurate tools for comparing DNA or protein 
sequences 



Available sequence comparison tools 

!

Similarity Metrics 
!

edit distance!
!

dynamic programming 
(needleman-wunsch, smith 

waterman) 
!

k-tuple (FASTA, BLAST) 
!

!

Clustering 
!

greedy (UCLUST,  CD-HIT) 
!

graph (markov clustering) 
!

vector (k-means) 
!

hierarchical!
!
!



Outline
• 1. Smith-waterman local alignment!

- Serial and parallel implementations in Julia 
!

• 2. Markov clustering!
- Parallelized linear algebra implementation in Julia 

!



1. Smith-waterman local alignment



Introduction to local Smith-waterman alignment
• Traditional string matching is not useful for comparing DNA or 

protein sequences due to evolutionary events 

• Traditional alignment is assessed through cost function (e.g. edit 
distance) or stochastic similarity scores (e.g. ML through HMM) 

• These approaches all involve dynamic programming, but this can 
be costly for large problems ~ O(MN) 

• Smith-waterman is highly amenable to parallelism due to specific 
data dependencies in the matrix



Smith-waterman algorithm
• N x M integer matrix, where N and M are sequence lengths

^ A T G C A T G C A T G C
^ 0 0 0 0 0 0 0 0 0 0 0 0 0
A 0
T 0
G 0
G 0
G 0
C 0
A 0
T 0
G 0

1. Initialize matrix

3.  Traceback Path
Hopt = max(H[i,j])
traceback(Hopt)

2.  Fill Matrix



Smith-waterman example

^ A T G C A T G C A T G C
^ 0 0 0 0 0 0 0 0 0 0 0 0 0
A 0 2 1 0 0 2 1 0 0 2 1 0 0
T 0 1 4 3 2 1 4 3 2 1 4 3 2
G 0 0 3 6 5 4 3 6 5 4 3 6 5
G 0 0 2 5 5 4 3 5 5 4 3 5 5
G 0 0 1 4 4 4 3 5 4 4 3 5 4
C 0 0 0 3 6 5 4 4 7 6 5 4 7
A 0 2 1 2 5 8 7 6 6 9 8 7 6
T 0 1 4 3 4 7 10 9 8 8 11 10 9
G 0 0 3 6 5 6 9 12 11 10 10 13 12

^ A T G C A T G C A T G C
^ N N N N N N N N N N N N N
A N M - - - M - - - M - - -
T N | M - - - M - - - M - -
G N | | M - - - M - - - M -
G N - | | M - - | M - - | M
G N - | | | M - M - M - M -
C N - | | M - - | M - - - M
A N M - | | M - - | M - - -
T N | M - | | M - - | M - -
G N | | M - | | M - - | M -

seq1 = "ATGCATGCATGC" 
seq2 = "ATGGGCATG"



Smith-waterman example

^ A T G C A T G C A T G C
^ 0 0 0 0 0 0 0 0 0 0 0 0 0
A 0 2 1 0 0 2 1 0 0 2 1 0 0
T 0 1 4 3 2 1 4 3 2 1 4 3 2
G 0 0 3 6 5 4 3 6 5 4 3 6 5
G 0 0 2 5 5 4 3 5 5 4 3 5 5
G 0 0 1 4 4 4 3 5 4 4 3 5 4
C 0 0 0 3 6 5 4 4 7 6 5 4 7
A 0 2 1 2 5 8 7 6 6 9 8 7 6
T 0 1 4 3 4 7 10 9 8 8 11 10 9
G 0 0 3 6 5 6 9 12 11 10 10 13 12

^ A T G C A T G C A T G C
^ N N N N N N N N N N N N N
A N M - - - M - - - M - - -
T N | M - - - M - - - M - -
G N | | M - - - M - - - M -
G N - | | M - - | M - - | M
G N - | | | M - M - M - M -
C N - | | M - - | M - - - M
A N M - | | M - - | M - - -
T N | M - | | M - - | M - -
G N | | M - | | M - - | M -

seq1 = "ATGCATGCATGC" 
seq2 = "ATGGGCATG"

ATGCATGCATG 
ATGG—GCATG



Parallel Implementation of SW

• Sequentially assign anti-diagonal elements to processers  

• With p=min(m,n) processors, DP table can be computed in (m + n -1 ) passes 

• Some inefficiency due to processor stalling equal to p(p-1) Liu et al. ICCS 2006 



Parallel Implementation of SW
for j = 2:col!
        jcol = j 
        irow = 2 
        @sync begin!
            count = 1 
            w = workers() 
            while jcol > 1 && irow < row + 1 
                   @async remotecall_wait(w[count],shared_get_score!,arguments)!
                    jcol -= 1 
                    irow += 1 
                    count += 1 
            end 
        end 
end

• Implemented this with normal arrays and shared arrays on a 40 core machine 



Performance of SW

• Parallel SW is ~1,880x slower, but Julia serial SW is ~2.5x faster than python
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Outlook
• Overhead too large for parallelism, but serial 

algorithm in Julia outperforms python 

• Try GPU computation with more cores (Julia CUDA 
and OpenCL) 

• Eliminate processor stalling by interleaving requests 

• Parallelize other database alignments, such as BLAST 

• Add support for protein alignment



2. Markov clustering!



Introduction to markov clustering
• Markov clustering algorithm originally developed for graph 

clustering and is now a key tool within bioinformatics 

• Useful for determining clusters in networks (e.g. protein interactions 
can help identify genes in disease such as cancer) 

• With next generation sequencing technologies, there are vast 
amounts of data 

• Performance and scalability issues are limiting factors

Van Dongen, S. A cluster algorithm for graphs, Information Systems



Markov-clustering overview
• Markov clustering is a simulation of random walks 

• After enough walks, flows in the graph become evident and 
correspond to clusters



Markov-clustering Algorithm
Two step process: where M is the transition matrix of a weighted, 
undirected graph!

1. Expansion 

!

!

2. Inflation



Markov-clustering Algorithm
Algorithm:!

1. Start with transition matrix 

2. Normalize the matrix 

3. Expand by taking the pth power of the matrix 

4. Inflate by taking the inflation of the matrix with parameter r 

5. Repeat steps 3 and 4 until steady state is reached 

6. Analyze matrix for clusters



Markov clustering example



Parallelizing markov clustering
• MCL is O(N3), where N is number of vertices 

• Cost due to matrix multiplication (inflation can be done in O(N2) ) 

• Because algorithm is just basic linear algebra operations, it’s highly 
amenable for parallelization 

• Implemented parallelized version of expansion and compared 
performance

Bustamam et al. IEEE 2010 HPC. 



MCL algorithm parallelized expansion
@everywhere function mymatmul!(n,w,sa,sb,sc,p)!
    range = 1+(w-1) * div(n,p) : (w) * div(n,p) 
    sc[:,range] = sa[:,:] * sb[:,range] 
end!
!

function sharedmult(n,p,sa,sb,sc)!
 @sync begin!
     for (i,w) in enumerate(workers()) 
         @async remotecall_wait(w, mymatmul!, n, i, sa, sb, sc,p) 
     end 
 end 
 return sc 
end



Performance of parallel matrix multiplication

• Shared memory improves performance by 25x!

• Near linear scaling is observed 
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Shared memory MCL has superior performance

• Shared memory MCL improves performance by 21x and has linear 
scalable performance
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The genetic landscape of a cell

Costanzo et al, Science, 2010

• Dataset created from an 
interaction map of 5.4 million 
gene-gene pairs from the 
budding yeast, 
Saccharomyces cerevisiae 

• 3886 nodes and 15,100,996 
edges 

• ~26% sparsity



MCL successfully clusters 3,886 proteins 

• MCL shared achieved 27x speed increase and linear scaling

Average cluster size: 6.45 proteins 
Clusters with >5 members: 229 

Singlet Clusters: 253 
Total # of clusters: 714
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Outlook

• Parallelizing in Julia gave superior performance of MCL 

• Even better performance was observed on a real, sparse dataset 

• Develop a version for GPU computation with Julia 

• Implement a sparse version in order to reduce memory usage (such 
as using CSC format in Julia)



Questions?

Thank you


