
Case Study: Analyzing the Serial and Parallel Performance of

MergeSort in Julia and C

Berj Chilingirian
berjc@mit.edu

Varun Mohan
vmohan@mit.edu

Luo Qian
wqian94@mit.edu

December 9, 2015

1 Overview

Julia is a high-level programming language designed for high performance computing as well as general
purpose programming. Via its parametric type system, multiple dispatch, and parallel execution, Julia has
surfaced as the programming language of choice for modern technical challenges. Its success, however, has
also motivated questions about its performance as a high-level language in comparison to low-level languages
like C and C++.

We are interested in what a programmer must sacrifice in performance (achieved via C) for the ease of
developing in Julia. To understand such performance gaps we invoke the following procedure.

1. Select an algorithm implemented in Julia’s Base library. We assume this code to be “high quality” Julia
code as it has been written by Julia contributors who have a strong understanding of the language’s
strengths and weaknesses.

2. Translate the code to the C programming language. Any performance differences between these two
implementations are the result of the C compiler (e.g. GCC) versus Julia’s just-in-time (JIT) compiler.
We refer to this stage of experimentation as the Base Comparison Phase.

3. Optimize both the C and Julia implementations of the code. Performance differences at this stage are
two-fold. First, employing the same optimization in both implementations may not produce the same
speedup. Second, there may exist an optimization for one implementation that is not possible in the
other implementation. Both are critical to understanding the underlying barriers of Julia and where
there may be room for improvement. We refer to this stage of experimentation as the Optimization
Comparison Phase.

4. Parallelize both the C and Julia optimized implementations of the code. We use Cilk to parallelize our
C implementation as its semantics are quite similar to Julia’s parallelization macros. We refer to this
stage of experimentation as the Parallel Comparison Phase.

In this report we employ the above procedure on the merge sort algorithm implemented as part of Julia’s
Base.Sort module. We select merge sort for the following reasons. First, it is not an embarrassingly parallel
algorithm: a developer cannot simply place @parallel macros in front of for-loops or take advantage of
Julia’s pmap function. Rather, parallelizing merge sort requires a developer to consider load-balancing issues
when using the @spawnat macro as well as the cost of using shared memory (e.g. Julia’s SharedArray).
Second, the merge sort algorithm is well-known and allows for our performance analysis to be the focal point
of this report (rather than the code’s complexity).

While comparing/interpreting performance is the primary goal of this report, we also detail challenges
we faced during the development process. We hope that these can be used to further improve the usability
of the Julia programming language.

1

The rest of this report is outlined as follows. §2 is a brief overview of works related to this project. §3
details the Base Sort Comparison Phase of our experimentation and delves into the native code produced
by both implementations. §4 discusses improvements made during the Optimization Comparison Phase and
their impact on performance. §5 details our efforts to parallelize both implementations and the resulting
speedup. §6 concludes with remarks on our findings and challenges we faced when developing in Julia. §7
briefly outlines several future directions for this work. All code related to this case study can be found at
https://github.com/VarunMohan/JuliaCMerge.

2 Related Work

There have already been several comparisons of Julia with other programming languages ([1], [2]) including
one by the Julia team (http://julialang.org/benchmarks/). While these works have demonstrated Julia’s
impressive performance (especially in comparison to Matlab and Python), they have lacked a formal model
explaining differences as well as an empirical analysis of the performance of Julia’s built-in methods. Such
details and studies are critical to explaining a Julia program’s performance results as well as discovering
areas of the language that can be made more efficient.

3 Base Comparison Phase

We began by porting the existing merge sort implementation of the Base.Sort module to our local ma-
chines. The Base.Sort implementation of merge sort is as follows. At the beginning, there is a recursive
step where we perform the merge sort on both halves of the original array. After this, there is a copy
phase wherein the first half of the second array is copied into a temporary portion. Finally, the temporary
portion and the second half of the original array are merged into the original array. Note that once the size
of the array is sufficiently small, we instead default to an insertion sort implementation to prune the base case.

The Julia code was then directly translated to C line-by-line. The only change we made to the original
Julia implementation was to specify the input of the merge sort algorithm to be of type Array{UInt32, 1}

instead of the original AbstractVector type. In this manner the Julia and C implementations are performing
exactly the same procedures on the same types of data. To test code performance we benchmarked each
implementation on randomly generated arrays of size 223 for a total of 10 trials and averaged the results.

Julia C
0.86s 0.80s

Table 1: Runtime of both the serial naive Julia and C implementations in seconds averaged over 10 trials
for randomly generated arrays of size 223.

aAs seen in Table 1, the C implementation is 7.5% faster than the Julia implementation. Note that
the differences between the performance can be attribtued to Julia’s JIT compiler versus compiling the C
implementation with GCC and optimization level -O3, which provides the highest level of optimization for
the compiler (excluding the Ofast flag, which is mostly used for fast math operations). In the following
section, we justify the speedup for C by analyzing the differences in assembly produced by corresponding
code snippets.

2

3.1 Assembly Level Differences

The first difference in assembly code can be seen during the copy phase. More specifically, after performing
the merge sort on the two halves of an array v, we copy the lower sorted half of v into a temporary array t
as shown in Figure 1.

i, j = 1, 1

while j <= half

t[i] = v[j]

i += 1

j += 1

end

Figure 1: Snippet of Julia’s merge sort copy phase.

cmpl %r14d, %r15d

jae L215

cmpq %rcx, %rax

jae L348

movl %r15d, (%rbx,%r9)

incq %r10

jmpq L231

cmpq %rcx, %rax

jae L348

movl %r14d, (%rbx,%r9)

Figure 2: Snippet of Julia assembly for copy phase.

movdqu (%rsi,%rax,1),%xmm0

add $0x1,%r8

movdqu %xmm0,(%rcx,%rax,1)

add $0x10,%rax

cmp %r8,%r10

ja 189

Figure 3: Snippet of C assembly for copy phase.

We first take examine the assembly created by the Julia compiler. In Figure 2, we see that the movl

instruction is being called, meaning that for every iteration only 4 bytes are being copied to the temporary
array. The assembly produced by the C compiler seen in Figure 3, instead performs operations on the xmm

register, which is a vector register of length 16 bytes. The fact that we are acting on 16 byte portions is also
validated by the rax register being incremented by 16 for every loop iterations. Furthermore, the movdqa

operations act on 16 byte portions from memory, showing how the compiler performs SIMD operations to
allow 4 times the number of UInt32 moves in 1 cycle. Because of this, the copy phase in for the C executable
is roughly 2 times faster. It was not exactly 4 times faster since we still pay a latency penalty by execut-
ing instructions for loop control. Note, that we could have sped up the copy in C even more by passing
the compiler the maxv2 compiler flag, which allows it to use AVX2 vector registers, which are 32 bytes in size.

We now compare the differences in assembly for the merge phase, wherein we merge the two sorted
halves of the original array. In Figure 4, we see that the Julia assembly contains substantially more jump
instructions than the C assembly in Figure 5. This implies that the Julia executable performs significantly
more branches than the C executable. The reason for this difference is that the C assembly performs
bithacks and a conditional move (cmove) instruction rather than compare and jump instructions. The cmove
instruction is much faster in this case since we no longer need to rely on the branch predictor to perform
speculative execution. Specifically, during merge sort, there is no inherent reason why the head of one sorted
halve would be selected over the other to be added to the head of the resultant sorted array, meaning that
branch prediction will never be efficient in this case. Furthermore, with the cmove, we pay the price of adding
a few more instructions and some data dependencies but prevent the flushing of the pipeline whenever the
incorrect branch is taken.

3

leaq -1(%rsi), %r11

leaq -4(,%rsi,4), %r9

movq 8(%rdi), %r14

xorl %ebx, %ebx

xorl %ecx, %ecx

leaq (%r11,%rcx), %rax

cmpq %r14, %rax

jae L345

cmpq 8(%r8), %rcx

jae L382

movq (%rdi), %rax

addq %r9, %rax

movl (%rbx,%rax), %r10d

movq (%r8), %rax

movl %r10d, (%rax,%rbx)

leaq 1(%rsi,%rcx), %r10

addq $4, %rbx

incq %rcx

cmpq %r15, %r10

jle L49

cmpq %rsi, %r10

jle L334

movl $1, %r11d

cmpq %rdx, %r10

jg L252

Figure 4: Snippet of Julia assembly for merge phase.

cmpq %rdx, %r12

jbe .L1

leaq 12(,%rax,4), %rcx

leaq 0(,%rbx,4), %r8

movq %r12, %rdi

subq %rdx, %rdi

leaq -16(%rcx), %r10

leaq 16(%r13,%r8), %r11

leaq 0(%r13,%r8), %r9

leaq 0(%rbp,%r10), %rsi

cmpq %r11, %rsi

setnb %r11b

addq %rbp, %rcx

cmpq %rcx, %r9

setnb %cl

orb %cl, %r11b

je .L27

cmpq $12, %rdi

jbe .L27

movq %r9, %rcx

andl $15, %ecx

shrq $2, %rcx

negq %rcx

movq %rcx, %rsi

andl $3, %esi

cmpq %rdi, %rsi

cmova %rdi, %rsi

testq %rsi, %rsi

movq %rsi, %rcx

je .L19

Figure 5: Snippet of C assembly for merge phase.

4 Optimization Comparison Phase

We next attempted to optimize both implementations. The first optimization was immediately apparent.
During the copy phase, instead of iterating over every element, we could instead perform a variant of a
memcpy instruction to maximize the performance of the copy phase. Note that the original code provided
in Figure 1 and Base.Sort module does not take advantage of Julia’s library copy! method that makes a
memmove system call. Using copy! achieves the inherent vectorization of memmove, improving the potential
performance of the algorithm. This change was also implemented in the C program (as a memcpy) and a
side-by-side comparison of both optimized serial codes produced the results seen in Table 2.

Julia C
0.86s 0.80s

Table 2: Runtime of both the serial optimized Julia and C implementations in seconds averaged over 10
trials for randomly generated arrays of size 223.

Note that C implementation is now only 3.75% faster. Note that the speedup achieved by the C imple-
mentation due to the optimization is close to 0% as compared to a 3.5% speedup for the Julia implementation.

4

The reason for the speedup in Julia is obvious since the naive implementation of moving UInt32 one by one
into the temporary array is now modified to use faster SIMD operations in the memmove function. However,
the C implementation saw no improvement. This is primarly due to the fact that the C implementation was
already very fast since it utilized vector registers, and adding the memcpy instruction albeit making the copy
slightly faster, added function call overhead, increasing latency.

The only difference in speed between the Julia and C can as before be attributed to the fact that the C
compiler performs more aggressive optimizations to the merge phase, that significantly reduces the number
of branches. Regardless, the serial results indicate that Julia code performs relatively similar to C although it
becomes apparent that the C compiler can perform far more high-powered optimizations to reduce run-time.

5 Parallel Comparison Phase

We next attempted to parallelize both implementations. In C this was quite simple with the Cilk libraries:
we added the cilk_spawn keyword in front of the first recursive merge sort call and added the cilk_sync

keyword after both recursive merge calls have completed in order to merge them without races. This imple-
mentation (simplified) is shown in Figure 6. The process of parallelizing the code above took approximately

cilk_spawn merge_sort(v, lo, half, t);

merge_sort(v, half + 1, hi, t);

cilk_sync;

Figure 6: Snippet of the parallelizing merge sort in C with Cilk.

30 seconds: as a developer we do not have to concern ourselves with load-balancing issues, we simply apply
Cilk’s parallel model to our code and Cilk handles work-stealing and scheduling of threads, given user input
of the number of threads to utilize.

In Julia this process was not as straightforward. First, in order to parallelize the merge sort algorithm
in Julia, our input array must be converted to a SharedArray in order to be shared across processes. This
resulted in a bit of difficulty. Julia’s library implementation of merge sort uses the similar method to
create an array with the same type as the input array. Unfortunately similar does not currently support
the SharedArray type. This is a known issue and requires a small hack to circumvent.

Next we had to share modules between all processes added via addprocs. At firs this seemed straight-
forward: simply add the @everywhere macro in front of modules that need to be shared before running any
computations. We soon realized that the order in which sharing and adding processes is done can effect
whether or not modules are shared. After finding conflicting information online we discovered the correct
ordering in order to share modules across all processes. This process, however, consumed two hours of
development time.

Finally we had to parallelize the actual implementation. Unlike when using Cilk, we as developers had
to consider how spawning work on different processes may effect load-balancing. Moreover, we could not
simply include keywords in front of the recursive calls to merge sort. In fact, we attempted this strategy at
first (as we are all experienced with Cilk) and due to the recursive creation of remote references we incurred
a variety of unreadable errors. In the end, we implemented a method that first performs a parallel merge
sort until all processors have a roughly equal portion of the shared-array to sort. Once each processor had
been spawned of all relevant subprocesses, we defaulted to a serial merge sort implementation. The method
of load balancing the computation on each worker is shown in Figure 7 on the next page.

5

if num_procs < 2

return MergeSortSerial!(v, lo, hi, t)

end

...

next_proc = convert(Int, cur_proc + floor(num_procs/2))

num_procs_remaining = convert(Int, floor(num_procs/2))

r = @spawnat next_proc MergeSortParallel!(v, lo, m, next_proc, num_procs

- num_procs_remaining, t)

MergeSortParallel!(v, m+1, hi, cur_proc, num_procs_remaining, t)

wait(r)

Figure 7: Snippet of the parallelizing merge sort in Julia.

The performance of these two implementations are shown in Figure 8.

Figure 8: Comparison of Julia and C for parallel implementations across a varying number of processes.

We first see that the parallel code applied to one processor runs substantially slower than original serial
implemenation with a speedup of around 0.65 in the case of one worker. This difference can be attributed to
the overhead of using the Shared Array data structure, which performs an mmap on the data region. This
is a very expensive operation since we potentially have to read pages from disk, which can take on the order
of millions of cycles. Furthermore, declaring the original array and temporary array as shared under the
current implementation of shared arrays, significantly reduces performance for a single threaded program.
On the other hand, in the case of a single worker, the Cilk C implementation performs exactly the same,
showing that the Cilk library does not have to perform any mapping operations in the case of a single thread.

In the case of two threads, the parallel Julia implementation performs roughly twice as fast as its paral-
lel single thread implemenation as did the C implementaion. The Julia implemenation is still significantly
slower than the parallel C program beacuse of the serial overhead of setting up the Shared Arrays.

In the case of three threads, however, Julia performs worse while Cilk continues to get speedup. This

6

is because Julia does not have a work stealing construct. Furthermore, in our implementation, for three
workers, we have that two workers are responsible for sorting a fourth of the array while another worker is
responsible for sorting an entire half. Furthermore, the program waits on the thread that has significantly
more work, making the problem equivalent to the case where there are only two workers, except with the
catch that there is the overhead of spawning an extra worker. Furthermore, by extending this logic, we see
that our Julia implemenation will only achieve optimal speedup when the number of workers is a power of
2 since each worker is in charge of roughly the same amount of work. The results in Figure 8, validate this
assertion, since we see significant speedups when the number of cores, n = 2, 4, 8. For the C implemenation,
since work stealing is implemented, it can take advantage of the fact that a single thread has substantially
more work, and allow free threads to steal work, adding slight overhead but reducing latency substantially.

Overall, however, when compared to the speedup against a single worker for executions with an optimal
number of workers, the Julia implementation attains speedup comparable to that of Cilk. This demonstrates
that spawning Cilk threads are similar in their overhead to spawning workers in Julia.

6 Conclusion

Going into this case study we knew that C would be faster than Julia: it is very hard for any language to
compete with C and the optimizations produced by GCC. However, we were pleasantly surprised with the
performance achieved by Julia. As the language is still very young, many of the challenges we faced during
the development process are understandable. We did, however, find two features of our results to be curious
and we believe they require further investigation.

First, as pointed out in §4.1, Julia’s JIT compiler produces fairly naive code. If Julia were to employ
methods similar to those used by Java’s HotSpot virtual machine, it may be able to achieve a significant
speedup. Second, as shown in §5, Julia’s parallelism suffers significantly from its SharedArray implementation
as well as the lack of work-stealing. The SharedArray Implementation, however, does prove useful in the case
where the data is larger than memory since it amortizes the cost of performing the mmap call. If Julia were
to offer a work-stealing construct for its @spawn semantics, code could be parallelized without the developer
having to concern him/herself of load-balancing issues. In addition, the parallelism would have been uniform
regardless of the number of processors, rather than being efficient for specific values.

7 Future Work

As mentioned in §6, Julia may benefit substantially from a work-stealing construct that allows processes to
steal computation from each other. We are very interested in understanding the complexity of designing
such a construct for Julia and pursuing its implementation.

8 References

[1] Aruoba, S. Boragan, and Jesus Fernandez-Villaverde. A comparison of programming languages in eco-
nomics. No. w20263. National Bureau of Economic Research, 2014.
[2] Domkes, Justin. “Julia, Matlab, and C.” Justin Domkes Weblog. N.p., 16 Sept. 2012. Web. 20 Oct.
2015.

7

