
MCMC inference over latent
diffeomorphisms using parallel computing

Angel Yu

Massachusetts Institute of Technology
77 Massachusetts Avenue, Cambridge, MA 02139, USA
E–mail: angelyu@mit.edu

1 Introduction

Diffeomorphisms are bijective differentiable transformations such that the in-
verse is differentiable as well. They have many applications in computer vision
such as correspondence based image warping. However, current representations
of these spaces are complicated and hard to compute on large datasets. Freifeld
et al. [1] proposed a representation of a subspace of these transformations that
can be computed in high accuracy efficiently while maintaining the expressive-
ness of diffeomorphisms. In this project, we implemented this representation in
both 1D and 2D and performed Monte Carlo Markov Chains (MCMC) inference
in this space of transformations using parallel computing in Julia.

2 CPAB transformations

The proposed space of transformations is based on the integrations of Con-
tinuous Piecewise-Affine (CPA) velocity fields. Hence, they are referred to as
CPA-based (CPAB) transformations. CPA velocity fields are continuous veloc-
ity fields that are piecewise affine with respect to a tessellation of the space.
Because these are continuous velocity fields, we are able to define a trajectory
φ(x, t) at every point x in the space and this is given by the integral equation:

φθ(x, t) = x+

∫ t

0

vθ(φθ(x, τ))dτ

where θ is the parameter of the CPA velocity field and vθ is velocity function.
By fixing t and mapping all points to the point at time t on its trajectory, we
obtain a CPAB transformation. We can easily see that these transformations
are indeed diffeomorphisms as we can take the negative of the velocity field to
obtain the inverse transformation.

To calculate this trajectory, we can use numerical methods to approximate
the integral. However, Freifeld et. al. [1] showed that it can be calculated
in a closed form if the point remains in the same cell of the tessellation, so we
would only need to use the numerical approximation when crossing boundaries

1

of cells. This allows a highly accurate as well as efficient calculation of CPAB
transformations

2.1 Tessalation and Parameters

For 1 dimensional spaces, we can easily tessellate the space into segments on
the x-axis. As the velocity field is CPA, the velocity in each cell is linear and
has to be continuous across different cells. An example of such a velocity field
is given in Figure 1a. In the 1D case, the number parameters is given by the
number of vertices which in this example is 6.

(a)(a) P1 (b) P2 (c) P3 (d) P4 (e) P5

Figure 3: Tessellating a 2D region in several resolutions.

Integration of CPA velocity fields. Integral equations
usually lack analytic solutions. Since CPA velocity fields
are Lipschitz-continuous and almost-everywhere smooth,
generic integration solvers are quite effective for them.
However, we can do even better. One of our contributions
is showing that integration of such fields is given in either
closed form (when n = 1) or almost closed form (n > 1).
Besides the obvious pluses (accuracy, computing time), this
solution makes it easier to interpret the resulting trajecto-
ries/transformation and is key to the theorems in § 3.

A specialized numerical solver. In practice, that solu-
tion has one shortcoming. It requires tedious bookkeeping
(if n > 1) and invoking certain routines (easy if n = 1 but
cumbersome if n > 1). This is especially a hurdle in GPU
implementations. We thus propose a practical alternative, a
specialized solver for integrating CPA velocity fields, which
is faster and more accurate than non-specialized solvers.

Convenient modeling, tractable inference. Smooth-
ness priors on M are easy to build and use. As is com-
mon with nonlinear spaces of nonlinear transformations, the
nonlinearity of (θ,x) 7→ T θ(x) prohibits closed-form pos-
terior or maximum likelihood calculations; however, since
(θ,x) 7→ T θ(x) is evaluated fast, so is θ 7→ p(data|T θ).
This facilitates the use of inference methods that rely on
multiple likelihood evaluations such as most Markov Chain
Monte Carlo (MCMC) methods. Lastly, CPAB transforma-
tions support coarse-to-fine analysis.

2. Related Work
CPA maps. In addition to fields such as numerical anal-

ysis and control theory, CPA maps are also used in com-
puter vision [7, 40]. Our use of them differs from such
works in that we integrate them as velocity fields to ob-
tain transformations. The ODE equivalent to Eqn. (1) is
dφθ(x,t)

dt = vθ(φθ(x, t)). Unlike us, who solve it and ex-
ploit its link to transformations, Lin et al. [26] use it only as
a regression model for fitting patterns in velocity data.

Pattern theory. Representing objects via transforma-
tions acting on them is a cornerstone in Grenander’s pattern
theory. Our work is influenced by the impressive works
initiated by Grenander and continued in the geometry-
oriented subcommunities of computer vision and medical
imaging. Due to space limits, we mention only a few:
[15, 16, 8, 24, 42, 4, 1, 18, 17, 43, 30, 45, 9]. How-
ever, rather than focusing on complicated, possibly ∞-
dimensional spaces (whose both representations and asso-

P Nc Nv D = 6Nc d = 2Nv

P1 4 5 24 10
P2 16 13 96 26
P3 64 41 384 82
P4 256 145 1536 290
P5 1024 1025 6144 1090

Table 1: Values of Nc, Nv , D = dim(V ′
Ω,P), and d =

dim(VΩ,P) for the P’s shown in Fig. 3. See § 3.

ciated integration are in practice often discretized and/or
approximated), or the geometry of transformation spaces,
here we take a different approach, emphasizing simplicity
and practicality, in order to provide the larger computer-
vision community with a simple and powerful tool. Thus,
our text avoids the direct use of differential geometry, mod-
ulo an optional discussion in the Sup. Mat. The ability
to rapidly evaluate transformations accurately and to cap-
ture a wide range of deformations while keeping complex-
ity low sets this work apart from other works on diffeomor-
phisms. Also, in applications involving N landmark pairs,
most methods can deal with only small values ofN , as their
complexity is O(Np), p > 1 (e.g., some methods invert a
dense nN×nN matrix). Thus, e.g., they cannot utilize tools
for dense-correspondence extraction (e.g., [25]), highlight-
ing a disconnect with the larger computer-vision commu-
nity. Ours is O(N) and most computations are parallelized.

Finitely-many affine building blocks. The PA transfor-
mations from [7] should be confused with neither PA/CPA
velocity fields nor CPAB transformations; see Remark 2. In
fact, PA transformations are neither differentiable (or even
continuous) nor invertible. Closer to ours is the work of Ar-
signy et al. [3] who, like us, use finitely-many affine build-
ing blocks to build flexible stationary velocity fields. While
they spatially average the blocks, we use a CPA constraint
on them. A field in our space is usually not in their space
(so their integration is inapplicable to it) and vice versa, pre-
venting a direct comparison of integrations. Unlike in our
integration method, they use an approximation throughout;
i.e., they must approximate the entire trajectory. Their ap-
proximation differs from others in that it uses a weighted
sum of matrix exponentials. As the approximation holds
only near zero, they must divide the field by a large num-
ber (which is tied to #steps). To keep #steps small, they
smartly generalize the scaling-and-squaring method. Their
scheme is exact only for a single block; however, expres-
siveness requires more blocks, so the accuracy drops. It is
thus unsurprising they focus on a small number of blocks,
and that to save time they use their method only in the last
stage of inference. For similar dimensions of spaces of ve-
locity fields, we can use larger (hence fewer) steps than
them since most of our steps are exact. Unlike them, for
n = dim(Ω) = 1 (regardless of the number of blocks)

(b)

Figure 1: (a) An example of a 1d velocity field. Here the tessellation contains 5
cells equally spaced between 0 and 10. (b) An example of a 2d tessellation we
will use. Here the tessellation contains 64 cells.

For 2 dimensional spaces, we choose a tessalation which allows easy computation
of which cell a point is in. We first partition the 2D into grids and then for
each grid, we draw the diagonals to create 4 triangles. An example of such a
tessellation is given in Figure 1b. There are 64 cells in this example tessellation
but because the velocity field has to be continuous across cells, the parameter
of velocity fields in this tessellation has a dimension of 58.

3 Inference

We now apply this transformation to the problem of correspondence based image
warping. The problem is given 2 images and a set of correspondences, infer the
underlying transformation that mapped the source image to the destination
image. This is illustrated in Figure 2 where we would like to find a CPAB
transformation that maps the red points to the blue points. This becomes an
optimization problem and we can create a least squared objective function as
follows:

f(θ) =
∑
i

||T θ(xi, t)− yi||2

where θ is the parameter of the CPAB transformation, T θ is the CPAB trans-
formation, t is the time to evaluate the trajectory, X = x1, x2, . . . , xn are the
source points and Y = y1, y2, . . . , yn are the destination points.

2

Figure 2: An inference problem: Inferring the underlying parameters of a CPAB
transformations that maps the red points to the blue points

3.1 Gradient Descent

Gradient descent is one of the most popular methods in optimization as it is
easy to implement and understand. Gradient descent finds a local minimum of
an objective function by taking steps in the direction of the steepest descent.
We start with an initial value of θ0. At each iteration, we find the gradient
f ′(θi) numerically and update the parameter:

θi+1 = θi − γf ′(θi)

where γ is a chosen step size which determines the rate of convergence.

A significant drawback of using gradient descent is that it can only find lo-
cal minimums and in most cases we would like to find the global minimum. A
common work-around is to try multiple initial θ0 and running gradient descent
on each of them. However, even with this, it will perform poorly on a function
with many local minimums.

3.2 Metropolis’ Algorithm

Metropolis’ Algorithm is an MCMC sampling algorithm that allows us to sam-
ple from a difficult to sample probability distribution P (x). Again, we start off
with an initial value of x0. At each iteration, we have a symmetric proposal

3

distribution Q(x|xi). This proposal distribution is usually taken to be a Gaus-
sian distribution centered at xi. We generate a sample x′ from this proposal
distribution. We then calculate the acceptance ratio α = P (x′)/P (xi). We au-
tomatically accept this sample if the acceptance ratio α ≥ 1 and set xi+1 = x′.
Otherwise we accept x′ with probability α by setting xi+1 = x′ and reject with
probability 1− α by setting xi+1 = xi. Note that we don’t actually need to be
able to calculate P (x), we just need to be able to calculate g(x) ∝ P (x) since
we only need the ratio.

Using Metropolis’ Algorithm to sample from a distribution P (x), we can also
find the mode of the distribution by storing the greatest value of P (x) seen so
far at each iteration.

We can also use it to optimize our objective function with respect to a prior dis-
tribution over θ. In our case, we would like to minimize f(θ) =

∑
i ||T θ(xi, t)−

yi||2. To do this, we have the following likelihood distribution:

P (X|θ) = C1e
−

∑
i ||T

θ(xi,t)−yi||
2

2σ2

= C1e
− f(θ)

2σ2

which is based on a Multivariate Gaussian distribution where C1 is a constant
and σ is a parameter representing the standard deviation. We can see that this
distribution obtains its maximum when f(θ) obtains its minimum. In addition,
we also have a Gaussian prior over θ. So our target posterior distribution
becomes:

P (θ|X) ∝ P (X|θ)P (θ)

= C1e
− f(θ)

2σ2 C2e
− 1

2 (θ−θµ)TΣ−1
θ (θ−θµ)

∝ e−
f(θ)

2σ2
− 1

2 (θ−θµ)TΣ−1
θ (θ−θµ) (3.1)

where C1, C2 are constants, θµ is the mean of the prior and Σθ is the covariance
of the prior. To make calculations easier, we can calculate the acceptance rate
in the log domain:

log(α) = log

(
P (θ′|X)

P (θ|X)

)
=
f(θ)− f(θ′)

2σ2
+

1

2
(θ − θµ)TΣ−1

θ (θ − θµ)− 1

2
(θ′ − θµ)TΣ−1

θ (θ′ − θµ)

This optimization method is likely to produce better results than gradient de-
scent as we are accepting samples that might not be better than the previous
sample. This allows us to not get stuck in local minimums which is one of the
biggest problems in gradient descent.

4

3.3 Particle Filter

Another popular MCMC algorithm is the Particle Filter. Instead of sampling
one sample each iteration in Metropolis, we now sample multiple samples (par-
ticles) each iteration that approximates the distribution. This algorithm is usu-
ally used for changing probability distributions such as in robotics or a video.
However, we will apply it to a fixed probability distribution here. For a target
distribution P (x) we first initialize a set of particles randomly sampled from
the prior. At each iteration, we calculate a weight for each particle proportional
to their probability such that the weights sum up to 1. We then re-sample
another set of particles from these particles based on the weights distribution.
So, higher weighted samples will have a higher chance of being picked. After
getting the re-sampled particles, for each particle, we perturb it with a pertur-
bation distribution centered at that particle. We have now obtained our set of
particles for the next iterations. After a few iterations, we should obtain a good
approximation of the target distribution.

We now apply it to our problem. In our case, our weights wj are defined to be:

w̃j = P (θij |X)

wj =
w̃j∑
k w̃k

where θij is the jth particle in the ith iteration and P (θ|X) is given by Equa-
tion 3.1. Since we are doing operations on multiple particles in each iteration,
we can see that we can easily parallelise over the particles. In addition, this
algorithm does not have the problem of being stuck in local minimums as long
as the perturbation distribution is chosen so that the model explores particles
sufficiently far from the original particles.

4 Results

We implemented both 1-dimensional and 2-dimensional calculations of CPAB
transformations in Julia. Figure 3 shows an example of a 2-dimensional CPAB
transformation on an image. Since, we are computing each pixel independently,
this problem is embarrassingly parallel. The time needed to compute a 2-
dimensional CPAB transformation on a 512x512 image is shown in Table 1.
Even though this problem is embarrassingly parallel, we can see there is much
overhead in the parallelization. This is due to the communication overhead as
we need to send parts of the image to different processes.

4.1 Gradient Descent

We used the Optim package and applied gradient descent to the problem de-
scribed in Figure 2 namely inferring the underlying CPAB transformation given
16x16=256 correspondences. The algorithm converged after 359 and the result

5

(a) (b)

Figure 3: (a) Original Image. (b) Image after applying a CPAB transformation.

Number of processes 1 2 4 8
Time (s) 0.78 0.49 0.38 0.37
Speedup 1.00x 1.59x 2.05x 2.11x

Table 1: Time to compute a CPAB transformation on a 512x512 image.

is shown in Figure 4. As we can see, the transformation inferred only somewhat
matches the underlying transformation. This is most likely because the trans-
formation found is a local minimum in our objective function. We tried paral-
lelizing over the 16x16 points when computing the objective function. However,
because

Figure 4: Applying gradient descent to infer the underlying CPAB transforma-
tion. The points in blue are the target points and the points in red are the
points after applying the inferred transformation

6

4.2 Metropolis’ Algorithm

We implemented Metropolis’ Algorithm described in Section 3.2 and applied
it to infer the underlying CPAB transformation in Figure 2 given a prior dis-
tribution. The prior is a multivariate Gaussian distribution with a mean of ~0
and some covariance priorCov. We ran 50,000 iterations and set our proposal
distribution to be a Gaussian centered at the current sample with covariance
0.00001priorCov. The result of this algorithm is shown in Figure 5a. We can
see that the points obtained using the inferred transformation match pretty
well with the target points. This is much better compared to the results we
obtained from using gradient descent. In Figure 5b, we can see that the al-
gorithm converges at around 20,000 iterations. We tried parallelizing this by
parallelizing the calculation of CPAB transformations described earlier. How-
ever, since there are only 256 points, it runs very fast and parallelizing it ac-
tually slows it down because of the overhead in communication. We actually
found a Julia while running these experiments. It seems that there is a race
condition when spawning the processes and a seg fault will occur when spawn-
ing a large number of processes. We submitted an issue ticket on github at:
https://github.com/JuliaLang/julia/issues/13999.

(a) (b)

Figure 5: (a) Applying Metropolis’ Algorithm to infer the underlying CPAB
transformation. The points in blue are the target points and the points in red
are the points after applying the inferred transformation. (b) Plot showing the
log likelihood and log prior over 50,000 iterations

4.3 Particle Filter

We implemented the Particle Filter algorithm described in Section 3.3 and ap-
plied it to infer the underlying CPAB transformation in Figure 2 given a prior
distribution of θ. We again have the prior as a multivariate Gaussian distri-
bution with a mean of ~0 and covariance of priorCov. We took the number of
particles to be 1,000 and the number of iterations to be 200. We have much less

7

iterations than in Metropolis’ as now we explore 1,000 samples in each iteration
instead of just 1. In addtition, we let the perturbation distribution be a Gaus-
sian centered at the current particle with covariance 0.001priorCov. The result
of this algorithm is shown in Figure 6a. We can see that the inferred points
almost match the target points and it is comparable with the results from using
Metropolis’ algorithm. However, this algorithm is much easier to parallelize as
we can parallelize over the particles. The time needed is summarized in Table
2. We can see that we get almost linear speedup when using 2 processes, but
we get much less than linear speedup when using 4 and 8 processes. This is be-
cause there is a big communication overhead when re-sampling from the current
particles as processes are pulling data from other processes. And this commu-
nication overhead dominates the time to compute the CPAB transformations
when using many processes.

(a) (b)

Figure 6: (a) Applying the Particle Filter algorithm to infer the underlying
CPAB transformation. The points in blue are the target points and the points
in red are the points after applying the inferred transformation. (b) Plot showing
the log likelihood and log prior over 200 iterations

Number of processes 1 2 4 8
Time (s) 199 105 63 54
Speedup 1.00x 1.90x 3.06x 3.67x

Table 2: Time to run the Particle Filter inference algorithm with 1,000 particles
for 200 iterations on 256 correspondences

In addition to using 16x16=256 correspondences, we experimented with using
full 512x512 correspondences. We ran the experiments on a cluster of 4 12-core
machines with 24 threads each. The timing for them are summarized in Table
3 and the speedup is illustrated in Figure 7. We can see that we obtain almost
linear speedup when parallelizing over 96 processes and it did not show signs
on slowing down. In the end, we were limited by the number of machines with

8

the same architecture as Julia did not allows parallelization over machines with
different CPU architectures. We realize it is hard to parallelize when machines
have different architectures, but it will be a really nice feature to add.

Number of processes 1 8 24 48 72 96
Time (s) 2240 308.5 98.54 54.71 40.54 30.09
Speedup 1.00x 7.26x 22.7x 40.9x 55.3x 74.4x

Table 3: Time to run each iteration of the Particle Filter inference algorithm
with 1,000 particles on 512x512 correspondences using distributed computing

Figure 7: Graph showing the speedup as we parallelize across multiple machines

5 Conclusion

In this project, we implemented the calculation of CPAB transformations in
Julia in both parallel and serial. We saw that it did not benefit too much from
the parallelization as the time to compute the transformation was already quite
fast and there was a good amount of overhead in spawning the processes. We
also applied these transformations to solving the correspondence based infer-
ence problem and experimented with 3 different inference algorithms in Julia.
We used Optim’s Gradient Descent implementation and compared it with our
implementations of Metropolis’ Algorithm and Particle Filter. We found that
Gradient Descent tends to get stuck at local minimums and both Metropolis’
Algorithm and Particle Filter achieved much better accuracy. The results of
those two however are quite similar, but Particle Filter allowed for easy par-
allelization over the number of particles and will therefore run much faster for
bigger problems and good hardware. We saw that we got excellent speedup
using the Particle Filter algorithm. The code for this project will be available
on Github soon.

9

Acknowledgments. The author would like to thank Dr Oren Freifeld for his
patient guidance, through which the author was exposed to CPAB transfor-
mations as well as MCMC methods and Professor Alan Edelman for offering
18.337/6.338 introducing the author to parallel computing in Julia.

References

[1] Freifeld, O., Hauberg, S., Batmanghelich K. and Fisher III, J. “Highly-
Expressive Spaces of Well-Behaved Transformations: Keeping It Simple.”
ICCV 2015.

10

