MCMC inference over latent
diffeomorphisms using parallel computing

Angel Yu

Massachusetts Institute of Technology
77 Massachusetts Avenue, Cambridge, MA 02139, USA
E-mail: angelyu@mit.edu

1 Introduction

Diffeomorphisms are bijective differentiable transformations such that the in-
verse is differentiable as well. They have many applications in computer vision
such as correspondence based image warping. However, current representations
of these spaces are complicated and hard to compute on large datasets. Freifeld
et al. [1] proposed a representation of a subspace of these transformations that
can be computed in high accuracy efficiently while maintaining the expressive-
ness of diffeomorphisms. In this project, we implemented this representation in
both 1D and 2D and performed Monte Carlo Markov Chains (MCMC) inference
in this space of transformations using parallel computing in Julia.

2 CPAB transformations

The proposed space of transformations is based on the integrations of Con-
tinuous Piecewise-Affine (CPA) velocity fields. Hence, they are referred to as
CPA-based (CPAB) transformations. CPA velocity fields are continuous veloc-
ity fields that are piecewise affine with respect to a tessellation of the space.
Because these are continuous velocity fields, we are able to define a trajectory
¢(x,t) at every point x in the space and this is given by the integral equation:

G.T =X tve 91‘7’ T
&z, 1) +/O (6°(, 7))d

where @ is the parameter of the CPA velocity field and v? is velocity function.
By fixing ¢ and mapping all points to the point at time ¢ on its trajectory, we
obtain a CPAB transformation. We can easily see that these transformations
are indeed diffeomorphisms as we can take the negative of the velocity field to
obtain the inverse transformation.

To calculate this trajectory, we can use numerical methods to approximate
the integral. However, Freifeld et. al. [1] showed that it can be calculated
in a closed form if the point remains in the same cell of the tessellation, so we
would only need to use the numerical approximation when crossing boundaries

of cells. This allows a highly accurate as well as efficient calculation of CPAB
transformations

2.1 Tessalation and Parameters

For 1 dimensional spaces, we can easily tessellate the space into segments on
the xz-axis. As the velocity field is CPA, the velocity in each cell is linear and
has to be continuous across different cells. An example of such a velocity field
is given in Figure la. In the 1D case, the number parameters is given by the
number of vertices which in this example is 6.

Figure 1: (a) An example of a 1d velocity field. Here the tessellation contains 5
cells equally spaced between 0 and 10. (b) An example of a 2d tessellation we
will use. Here the tessellation contains 64 cells.

For 2 dimensional spaces, we choose a tessalation which allows easy computation
of which cell a point is in. We first partition the 2D into grids and then for
each grid, we draw the diagonals to create 4 triangles. An example of such a
tessellation is given in Figure 1b. There are 64 cells in this example tessellation
but because the velocity field has to be continuous across cells, the parameter
of velocity fields in this tessellation has a dimension of 58.

3 Inference

We now apply this transformation to the problem of correspondence based image
warping. The problem is given 2 images and a set of correspondences, infer the
underlying transformation that mapped the source image to the destination
image. This is illustrated in Figure 2 where we would like to find a CPAB
transformation that maps the red points to the blue points. This becomes an
optimization problem and we can create a least squared objective function as

follows:
f(0) = Z T (i, t) — vl

where 6 is the parameter of the CPAB transformation, T is the CPAB trans-
formation, t is the time to evaluate the trajectory, X = x1,xs,...,x, are the
source points and Y = y;,ys, ..., y, are the destination points.

600

sool L A . ®
e % g, 0 3 0 % %, e oo
o % % % % % % ° % :o'o'n o o o o o
400} -'-'.'.'-'i":o'."""t"
. n. c. n. % = [L TN L) .' c' . @
. I. -. n. S 4% % s - .nla. .. n' -.n L]
S o o e egtge, g o o s s s 0% o
300 ¢ : l.. ‘..- L LI : : ..n ..n'.-.o.-lo -
* L. L L R s % % o o
.2 1. s e e l.l. F I B B B)
200+ * : l' '. l.".l s @ o o0 e 0 o .- [N]
* : LI T %o %5 e 00 0y 9 § 8 ° .o .
* N S % % 0% 0% % o, o, o o o HEE Y
100 ® D e s s s e e 0p 4y 9 o ; E f
e e"e® e " T ssvss et & 4 § ; .
o, o 8. ® * * o o
¢ % % s, 0,0 800 sr 0 0 s g o
0f 8 %% o o s 6%c%%* P2 0 0 s
-100 L . .
-100 0 100 200 300 400 500 600

Figure 2: An inference problem: Inferring the underlying parameters of a CPAB
transformations that maps the red points to the blue points

3.1 Gradient Descent

Gradient descent is one of the most popular methods in optimization as it is
easy to implement and understand. Gradient descent finds a local minimum of
an objective function by taking steps in the direction of the steepest descent.
We start with an initial value of 6y. At each iteration, we find the gradient
17(6;) numerically and update the parameter:

Oiv1=0; —vf'(0:)
where 7 is a chosen step size which determines the rate of convergence.

A significant drawback of using gradient descent is that it can only find lo-
cal minimums and in most cases we would like to find the global minimum. A
common work-around is to try multiple initial 8y and running gradient descent
on each of them. However, even with this, it will perform poorly on a function
with many local minimums.

3.2 Metropolis’ Algorithm

Metropolis’ Algorithm is an MCMC sampling algorithm that allows us to sam-
ple from a difficult to sample probability distribution P(z). Again, we start off
with an initial value of xy. At each iteration, we have a symmetric proposal

distribution @Q(x|z;). This proposal distribution is usually taken to be a Gaus-
sian distribution centered at z;. We generate a sample =’ from this proposal
distribution. We then calculate the acceptance ratio a« = P(z’)/P(x;). We au-
tomatically accept this sample if the acceptance ratio o > 1 and set ;41 = 2'.
Otherwise we accept 2’ with probability « by setting ;.1 = 2’ and reject with
probability 1 — « by setting x;41 = x;. Note that we don’t actually need to be
able to calculate P(z), we just need to be able to calculate g(x) < P(z) since
we only need the ratio.

Using Metropolis’ Algorithm to sample from a distribution P(x), we can also
find the mode of the distribution by storing the greatest value of P(x) seen so
far at each iteration.

We can also use it to optimize our objective function with respect to a prior dis-
tribution over . In our case, we would like to minimize f(0) = >, ||T%(z;,t) —
yi||%. To do this, we have the following likelihood distribution:

i N w112
P(X|9) =(C1e 202

_ (e
= (e 252

which is based on a Multivariate Gaussian distribution where C; is a constant
and o is a parameter representing the standard deviation. We can see that this
distribution obtains its maximum when f(#) obtains its minimum. In addition,
we also have a Gaussian prior over §. So our target posterior distribution
becomes:

P(0]1X) o< P(X|0)P(0)
= C'le_%026*%(9*%?2;1(979“)

o o= B 1(0-0.)755 1 (6-6,) (3.1)

where C', C5 are constants, 6, is the mean of the prior and X is the covariance
of the prior. To make calculations easier, we can calculate the acceptance rate
in the log domain:

P(9’|X>>

log(a) = log < PEIX)

= f(9)2;2f(9/) + %(9 - HM)TZ(;I(G - eu) - %(9/ - au)ngl(Gl - 6’”)

This optimization method is likely to produce better results than gradient de-
scent as we are accepting samples that might not be better than the previous
sample. This allows us to not get stuck in local minimums which is one of the
biggest problems in gradient descent.

3.3 Particle Filter

Another popular MCMC algorithm is the Particle Filter. Instead of sampling
one sample each iteration in Metropolis, we now sample multiple samples (par-
ticles) each iteration that approximates the distribution. This algorithm is usu-
ally used for changing probability distributions such as in robotics or a video.
However, we will apply it to a fixed probability distribution here. For a target
distribution P(x) we first initialize a set of particles randomly sampled from
the prior. At each iteration, we calculate a weight for each particle proportional
to their probability such that the weights sum up to 1. We then re-sample
another set of particles from these particles based on the weights distribution.
So, higher weighted samples will have a higher chance of being picked. After
getting the re-sampled particles, for each particle, we perturb it with a pertur-
bation distribution centered at that particle. We have now obtained our set of
particles for the next iterations. After a few iterations, we should obtain a good
approximation of the target distribution.

We now apply it to our problem. In our case, our weights w; are defined to be:

w; = P(6}]X)
w;

B kak

where 9; is the jth particle in the ith iteration and P(6]|X) is given by Equa-
tion 3.1. Since we are doing operations on multiple particles in each iteration,
we can see that we can easily parallelise over the particles. In addition, this
algorithm does not have the problem of being stuck in local minimums as long
as the perturbation distribution is chosen so that the model explores particles
sufficiently far from the original particles.

wj

4 Results

We implemented both 1-dimensional and 2-dimensional calculations of CPAB
transformations in Julia. Figure 3 shows an example of a 2-dimensional CPAB
transformation on an image. Since, we are computing each pixel independently,
this problem is embarrassingly parallel. The time needed to compute a 2-
dimensional CPAB transformation on a 512x512 image is shown in Table 1.
Even though this problem is embarrassingly parallel, we can see there is much
overhead in the parallelization. This is due to the communication overhead as
we need to send parts of the image to different processes.

4.1 Gradient Descent

We used the Optim package and applied gradient descent to the problem de-
scribed in Figure 2 namely inferring the underlying CPAB transformation given
16x16=256 correspondences. The algorithm converged after 359 and the result

Figure 3: (a) Original Image. (b) Image after applying a CPAB transformation.

Number of processes 1 2 4 8
Time (s) 0.78 | 0.49 | 0.38 | 0.37
Speedup 1.00x | 1.59x | 2.05x | 2.11x

Table 1: Time to compute a CPAB transformation on a 512x512 image.

is shown in Figure 4. As we can see, the transformation inferred only somewhat
matches the underlying transformation. This is most likely because the trans-
formation found is a local minimum in our objective function. We tried paral-

lelizing over the 16x16 points when computing the objective function. However,
because

600

500 |

400 |

e 0 Pe s
s0edoe
DN N

.
.

e 0O %, L % e
ceo0®a o & o0 h

300 |

..-.;ocofo'
.
.

L)
s o o misse 0O

se ¢ o 0me

g s 0 g

* e 0

.

M
(IR R AR

. % 3§

.’.OOOQOQ. PN

200+

e **otesece e,
* .
.
.
)
“
oo
.
So®
.
.

100

.
.
co
coe
. o

o
L)
,.....""“

wte 00 ®
som ¥
oo 0 e’

o
.

n . . .
100 200 300 400 500

Figure 4: Applying gradient descent to infer the underlying CPAB transforma-

tion. The points in blue are the target points and the points in red are the
points after applying the inferred transformation

4.2 Metropolis’ Algorithm

We implemented Metropolis’ Algorithm described in Section 3.2 and applied
it to infer the underlying CPAB transformation in Figure 2 given a prior dis-
tribution. The prior is a multivariate Gaussian distribution with a mean of 0
and some covariance priorCov. We ran 50,000 iterations and set our proposal
distribution to be a Gaussian centered at the current sample with covariance
0.00001priorCov. The result of this algorithm is shown in Figure 5a. We can
see that the points obtained using the inferred transformation match pretty
well with the target points. This is much better compared to the results we
obtained from using gradient descent. In Figure 5b, we can see that the al-
gorithm converges at around 20,000 iterations. We tried parallelizing this by
parallelizing the calculation of CPAB transformations described earlier. How-
ever, since there are only 256 points, it runs very fast and parallelizing it ac-
tually slows it down because of the overhead in communication. We actually
found a Julia while running these experiments. It seems that there is a race
condition when spawning the processes and a seg fault will occur when spawn-
ing a large number of processes. We submitted an issue ticket on github at:
https://github.com/Julialang/julia/issues/13999.

600 0

500 © P e
o .
® o 00 o o -200

cee e

400 e e o o o o *

—400

oo o o000

. .
300 e o o °
.
.
-600

-800

— log likelihood
— log prior
— log likelihood + log prior

-100 -1000
~100 0 100 200 300 400 500 0 10000 20000 30000 40000 50000

(a) (b)

Figure 5: (a) Applying Metropolis’ Algorithm to infer the underlying CPAB
transformation. The points in blue are the target points and the points in red
are the points after applying the inferred transformation. (b) Plot showing the
log likelihood and log prior over 50,000 iterations

4.3 Particle Filter

We implemented the Particle Filter algorithm described in Section 3.3 and ap-
plied it to infer the underlying CPAB transformation in Figure 2 given a prior
distribution of 8. We again have the prior as a multivariate Gaussian distri-
bution with a mean of 0 and covariance of priorCov. We took the number of
particles to be 1,000 and the number of iterations to be 200. We have much less

iterations than in Metropolis’ as now we explore 1,000 samples in each iteration
instead of just 1. In addtition, we let the perturbation distribution be a Gaus-
sian centered at the current particle with covariance 0.001priorCov. The result
of this algorithm is shown in Figure 6a. We can see that the inferred points
almost match the target points and it is comparable with the results from using
Metropolis’ algorithm. However, this algorithm is much easier to parallelize as
we can parallelize over the particles. The time needed is summarized in Table
2. We can see that we get almost linear speedup when using 2 processes, but
we get much less than linear speedup when using 4 and 8 processes. This is be-
cause there is a big communication overhead when re-sampling from the current
particles as processes are pulling data from other processes. And this commu-
nication overhead dominates the time to compute the CPAB transformations
when using many processes.

-100

-150

— log likelihood
—— log prior
— log likelihood + log prior

~1 -200
=100 0 100 200 300 400 500 50 100 150 200

Figure 6: (a) Applying the Particle Filter algorithm to infer the underlying
CPAB transformation. The points in blue are the target points and the points
in red are the points after applying the inferred transformation. (b) Plot showing
the log likelihood and log prior over 200 iterations

Number of processes 1 2 4 8
Time (s) 199 105 63 54
Speedup 1.00x | 1.90x | 3.06x | 3.67x

Table 2: Time to run the Particle Filter inference algorithm with 1,000 particles
for 200 iterations on 256 correspondences

In addition to using 16x16=256 correspondences, we experimented with using
full 512x512 correspondences. We ran the experiments on a cluster of 4 12-core
machines with 24 threads each. The timing for them are summarized in Table
3 and the speedup is illustrated in Figure 7. We can see that we obtain almost
linear speedup when parallelizing over 96 processes and it did not show signs
on slowing down. In the end, we were limited by the number of machines with

the same architecture as Julia did not allows parallelization over machines with
different CPU architectures. We realize it is hard to parallelize when machines
have different architectures, but it will be a really nice feature to add.

Number of processes 1 8 24 48 72 96
Time (s) 2240 | 308.5 | 98.54 | 54.71 | 40.54 | 30.09
Speedup 1.00x | 7.26x | 22.7x | 40.9x | 55.3x | 74.4x

Table 3: Time to run each iteration of the Particle Filter inference algorithm
with 1,000 particles on 512x512 correspondences using distributed computing

Parallel Particle Filter

Speedup

[I Y

SRR =-=-N-]

0 20 40 60 B0 100 120

Numer of Processes

Figure 7: Graph showing the speedup as we parallelize across multiple machines

5 Conclusion

In this project, we implemented the calculation of CPAB transformations in
Julia in both parallel and serial. We saw that it did not benefit too much from
the parallelization as the time to compute the transformation was already quite
fast and there was a good amount of overhead in spawning the processes. We
also applied these transformations to solving the correspondence based infer-
ence problem and experimented with 3 different inference algorithms in Julia.
We used Optim’s Gradient Descent implementation and compared it with our
implementations of Metropolis’ Algorithm and Particle Filter. We found that
Gradient Descent tends to get stuck at local minimums and both Metropolis’
Algorithm and Particle Filter achieved much better accuracy. The results of
those two however are quite similar, but Particle Filter allowed for easy par-
allelization over the number of particles and will therefore run much faster for
bigger problems and good hardware. We saw that we got excellent speedup
using the Particle Filter algorithm. The code for this project will be available
on Github soon.

Acknowledgments. The author would like to thank Dr Oren Freifeld for his
patient guidance, through which the author was exposed to CPAB transfor-
mations as well as MCMC methods and Professor Alan Edelman for offering
18.337/6.338 introducing the author to parallel computing in Julia.

References

[1] Freifeld, O., Hauberg, S., Batmanghelich K. and Fisher III, J. “Highly-
Expressive Spaces of Well-Behaved Transformations: Keeping It Simple.”
ICCV 2015.

10

