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MACHINE LEARNING 
AND DEEP LEARNING

A very brief introduction



What is Machine Learning?

■ Typical machine learning example: email spam filtering



What is Machine Learning?

■ Traditional Rule-based spam filtering:
for word in email

if word ∈ [“buy”, “$$$”, “100% free”]
return :spam

end
end
return :good

■ Issues
– Growing list of spam-triggering keywords
– Longer word-sequences needed for higher accuracy, and rules could become very 

complicated and hard to maintain
– …



What is Machine Learning?

■ Machine learning: training a model from examples
– Input 1: training data with labels, including spam email examples and good email 

examples, marked by human labeler as “spam” or “good”
– Input 2: a parametric (usually probabilistic) model, describing a function

𝑓": 𝒳	 → ±1
where 𝒳 is the space of all emails, +1 indicate good emails, and -1 indicate spam 
emails. 𝜃 is the parameters of the model, that is to be decided.

– Input 3: a cost function: 𝐶(𝑦, 𝑦.), measuring the cost of predicting as 𝑦. when the 
true label is 𝑦.

– Training: essentially solving
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Example: the Naïve Bayes Model
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■ Each 𝑥7 is the count of a specific word (e.g. “buy”) in our vocabulary

■ The parameters 𝜃 encodes all the conditional probabilities, e.g. ℙ" 𝑏𝑢𝑦 spam =
0.1, ℙ" 𝑏𝑢𝑦 good = 0.001.

■ The optimal 𝜃 is “learned” automatically from the examples in the training set.

■ In practice, more complicated models can be built and used.

■ Statistical and computational learning theory: learnability and performance 
gurantee.



Machine Learning in the Wild

■ Computer Vision
– Image classification: face recognition, object category identification
– Image segmentation: find and locate objects, and carve out their boundaries
– Scene understanding: high-level semantic information extraction
– Image captioning: summarize an image with a sentence

Andrej Karpathy and Li Fei-Fei. Deep Visual-Semantic Alignments for Generating Image Descriptions. CVPR 2015.



Machine Learning in the Wild

■ Speech Recognition
– Input: audio signals; output: text transcription
– Apple Siri, Google Now, Microsoft Cortana

■ Natural Language Processing
– Semantic parsing: output is syntax trees
– Machine translation: output is a sentence in another language
– Sentiment analysis: output “positive” or “negative”

■ Artificial Intelligence
– Google deepmind: reinforcement learning for playing video games

see Fig. 3, Supplementary Discussion and Extended Data Table 2). In
additional simulations (see Supplementary Discussion and Extended
Data Tables 3 and 4), we demonstrate the importance of the individual
core components of the DQN agent—the replay memory, separate target
Q-network and deep convolutional network architecture—by disabling
them and demonstrating the detrimental effects on performance.

We next examined the representations learned by DQN that under-
pinned the successful performance of the agent in the context of the game
Space Invaders (see Supplementary Video 1 for a demonstration of the
performance of DQN), by using a technique developed for the visual-
ization of high-dimensional data called ‘t-SNE’25 (Fig. 4). As expected,
the t-SNE algorithm tends to map the DQN representation of percep-
tually similar states to nearby points. Interestingly, we also found instances
in which the t-SNE algorithm generated similar embeddings for DQN
representations of states that are close in terms of expected reward but

perceptually dissimilar (Fig. 4, bottom right, top left and middle), con-
sistent with the notion that the network is able to learn representations
that support adaptive behaviour from high-dimensional sensory inputs.
Furthermore, we also show that the representations learned by DQN
are able to generalize to data generated from policies other than its
own—in simulations where we presented as input to the network game
states experienced during human and agent play, recorded the repre-
sentations of the last hidden layer, and visualized the embeddings gen-
erated by the t-SNE algorithm (Extended Data Fig. 1 and Supplementary
Discussion). Extended Data Fig. 2 provides an additional illustration of
how the representations learned by DQN allow it to accurately predict
state and action values.

It is worth noting that the games in which DQN excels are extremely
varied in their nature, from side-scrolling shooters (River Raid) to box-
ing games (Boxing) and three-dimensional car-racing games (Enduro).
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Figure 3 | Comparison of the DQN agent with the best reinforcement
learning methods15 in the literature. The performance of DQN is normalized
with respect to a professional human games tester (that is, 100% level) and
random play (that is, 0% level). Note that the normalized performance of DQN,
expressed as a percentage, is calculated as: 100 3 (DQN score 2 random play
score)/(human score 2 random play score). It can be seen that DQN

outperforms competing methods (also see Extended Data Table 2) in almost all
the games, and performs at a level that is broadly comparable with or superior
to a professional human games tester (that is, operationalized as a level of
75% or above) in the majority of games. Audio output was disabled for both
human players and agents. Error bars indicate s.d. across the 30 evaluation
episodes, starting with different initial conditions.
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Google Deep Mind. Human-level control through deep reinforcement learning. Nature, Feb. 2015.



What is Deep Learning then?
■ Designing a good model is difficult

■ Recall the Naïve Bayes model
– The prediction is parameterized by the probability of each word conditioned on the 

document being a spam or a good email.
– The count of words in a (fixed) vocabulary is what we are looking at, those are called 

features or representations of the input data.
– Two representations could contain the same information, but still be “good” or 

“bad”, for a specific task.

■ Example: 
representations of a 
number



What is Deep Learning then?

■ Depending on the quality of the features, the learning problem might become easy 
or difficult.

■ What features to look at when the input are complicated or unintuitive?
– E.g. for image input, looking at the raw pixels directly is usually not very helpful

■ Feature designing / engineering used to be a very important part of machine 
learning applications.

– SIFT in computer vision
– MFCC in speech recognition

■ Deep Learning: learning both the representations and the model parameters
automatically and jointly from the data.

– Recently become possible with huge amount of data (credit: internet, mobile 
devices, Mechanic Turk, …) and highly efficient computing devices (GPUs, ...)



DEEP LEARNING AND 
GPU PARALLELIZATION

In Julia… a tiny introduction



GPUs vs. CPUs

CPUs GPUs

Typical number 
of cores

Dozens of Thousands of

Features General purpose 
computing

“General” purpose 
computing

Parallelization Arbitrarily complicated 
scheduling of different 
processes and threads 
performing heteogeneous
tasks

All cores run the 
same “kernel” 
function, without or 
with very limited 
communication or 
sharing.

Example One thread classifying 
emails and one thread 
displaying them in a GPU

Computing max(X, 0), 
each core taking care 
of 1 element in the 
matrix X.



Several Facts

■ Many machine learning and deep learning algorithms fits nicely with GPU 
parallilization models: simple logic but massive parallel computation.

■ Training time large deep neural networks:
– From ∞ (or probably finite, but takes years, nobody was able to do it in pre-GPU age)
– To weeks or even days, with optimally designed models, computation kernels, IO, 

and multi-GPU parallizations

■ Julia is primarily designed for CPU parallelization and distributed computing, but 
GPU computing in Julia is gradually getting there

– https://github.com/JuliaGPU



Deep Learning in Julia

■ Now there are several packages available in Julia with GPU supports
– Mocha.jl: https://github.com/pluskid/Mocha.jl

Currently the most feature complete one. Design and architecture borrowed from 
the Caffe deep learning library.

– MXNet.jl: https://github.com/dmlc/MXNet.jl
A successor of Mocha.jl. Different design, with a language-agnostic C++ backend 
dmlc/libmxnet. Relatively new but very promising, with flexible symbolic API and 
efficient multi-GPU training support.

– Knet.jl: https://github.com/denizyuret/Knet.jl
Experimental symbolic neural network building script compilation.



IMAGE CLASSIFICATION 
IN JULIA

A tutorial with MXNet.jl



Hello World: Handwritten Digits

■ MNIST handwritten digit dataset
– http://yann.lecun.com/exdb/mnist/

■ Each digit is a 28-by-28 grayscale image

■ 10 target classes: 0, 1, …, 9

■ 60,000 training images, and 10,000 test 
images

■ Considered as a fairly easy task nowdays, the 
“sanity-check” task for many machine learning 
algorithms



A Convolutional Neural Network: LeNet

■ A classical model invented by Yann LeCun, called the LeNet.

■ Chain of convolution and pooling operations, followed by densely connected neural 
network layers.

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.



What is Convolution and Pooling?

■ Convolution:
– Basically pattern matching across spatial 

locations, but…
– The patterns (filters) are not designed a 

priori, but learned from the data and task.

■ Pooling:
– Accumulating local statisitcs of filter 

responses from the convolution layer.
– Leads to local spatial invariance for the 

learned patterns.

Image source: http://inspirehep.net/record/1252539
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Loading the Data and Training the 
Model (Stochastic Gradient Descent)



A More Interesting Example: Imagenet

■ The Imagenet dataset: http://www.image-net.org/
– 14,197,122 full-resolution images, 21,841 target classes
– Challenges every year (Imagenet Large Scale Visual Recognition Challenge, ILSVRC)
– A smaller subset with ~1,000,000 images and 1,000 categories is typically used

People started to use deep 
convolutional neural networks



The Google “Inception” Model

■ Winner of ILSVRC 2014, 27 layers, ~7 million parameters

■ With a highly optimized library, on 4 GPU cards, training a similar model takes 8.5 
days (see http://mxnet.readthedocs.org/en/latest/tutorial/imagenet_full.html)

Christian Szegedy, et. al. Going Deeper with Convolutions. arXiv:1409.4842 [cs.CV].



Image Classification with a Pre-trained 
Model
■ Because we cannot have a 8.5-day long class…

■ We will show a demo on using pre-trained model to do image classification

■ The IJulia Notebook is at: 
http://nbviewer.ipython.org/github/dmlc/MXNet.jl/blob/master/examples/imagene
t/ijulia-pretrained-predict/Prediction%20with%20Pre-trained%20Model.ipynb



GPU Programming in 
Julia: Status
■ High-level programming APIs
– CUFFT.jl, CUBLAS.jl, CLBLAS.jl, CUDNN.jl, 

CUSPARSE.jl, etc…

■ Intermediate-level programming APIs
– CUDArt.jl, OpenCL.jl
– Write kernel functions in C++, but high-level 

program logic in Julia

■ Low-level programming APIs
– Using Julia FFI, to call into libcudart.so etc.

ccall((:cuLaunchKernel, “libcuda”), 
(Ptr{Void}, …), kernel_hdr, gx, gy, ...)


