Multi-GPU and the

Wavelet Transform
Andre Kessler [6.338/18.337]

(SpaceX Combustion Group)

DECEMBER 9,2013

THE GRAPHICS PROCESSING UNIT

Good for big computation
NVIDIA’s Tesla K20 has...
1.17 Tflops double / 3.52 Tflops
single

Not so great for big data
NVIDIA’s Tesla K20 has...
Just 5 GB

Improving, but not quickly

enough
Next-gen K40 has 12 GB

THE PROBLEM OF 3-D DATA

»Very high fidelity 3-d data
takes up a lot of space.
»Simple grayscale voxel
field with a single float
per point:
»Upto N<1,700
»If one double per point,
»Up to N <850

»|f RGBA data, halve again:
http://www.mathworks.com/products/de
> UP to N < 425 mos/image/3d_mri/mri_hori.gif

FoIIowing slides: http://www.home-barista.com/reviews/titan-grinder-project-scanning-
electron-microscope-sem-analysis-of-ground-coffee-t4205.html

WAVELET TRANSFORM

First simple example:
(a,b) > (u=(a+b)/2, 6§ =b—a)

(Following example from Ripples in Mathematics)

56 40 8 24 48 48 40 16

48 16 48 28 -16 16 0 -24

32 38 -32 -20 -16 16 0 -24

35 6 -32 20 -16 16 0 -24

WAVELET TRANSFORM
56 40 8 24 48 48 40 16

48 16 48 28 -16 16 0 -24
32 38 -32 -20 -16 16 0 -24
35 6 -32 20 -16 16 0 -24

The idea is that we can turn our data into a set of
Coarse data - in this case, we’ve got one (35 on the left)

Detail coefficients — in this case, the 7 entries to the right

Notice the detail coefficients are smaller than the
original data. Now we’ll compress w/ a high-pass filter.

WAVELET TRANSFORM

Again, an example:

http://www.ima.umn.edu/industrial/97 98/sweldens/fourth.html

http://www.ima.umn.edu/industrial/97_98/sweldens/fourth.html

ZEROTREE/ZEROBIT ENCODING

Cell Information
0
bal
o

sarcobdts (lawel 1) sigqondficamo: maf

e-byte offzet

Cell Tag Table

A Set of Lo
Decomposed Cell P [=1]

two—byte offzet

[~]

sarcobdts (lawel 1) sigqondficamo: maf

oE : ane-byte offzet

2210 []

2 gt : two-byte offsat

35 i

Eerobdts (lew=]1 1) = 1oamoe rrﬁ:l.H\Lh
| LI I I I I I A | | | LI I I I I I B | |

21110 1 0 me-bpke offset

& nfnjnun []

T two—byte offze

/) L]

serohits bytetag —

{Lewvel 0) =y /’

One-Byte Stream ,-""f

Two-Byte Stream

WAVELETS + GPUS

Why is this combination particularly
attractive!

Computation is cheap

Compress/decompress is very cheap; host
to device memory reads are terribly
slow
S0 you can compress your data,
selectively decode a part and do your
computation, then recompress

GPU MEMORY TRANSFERS
From host memory: 250 GB/s

Coalesced reads are absolutely necessary
Fetching cache lines at a time (float4)

Part of a cluster for propulsion analysis

4x computer nodes

Hooked up with Infiniband

4x Tesla K20 each
(1.17 Tflops single / 3.52 Tflops double / 5 GB)

GPUDirect (Mellanox)
Overall, | 8 Tflops double / 56 Tflops single
Only 96 GB total GPU RAM

MULTI-GPU PROGRAMMING

» Peer-to-peer addressing
» Unified virtual addressing

» GPUDirect (https://developer.nvidia.com/gpudirect)

System System

ME"“"“’ G[:-[:-Rﬁ GDDR5 GDDRE GDDRE Sl
Memo Memory Mem{r Memﬂry “W
‘ l i l

GPU | CPU

Server 1 Server 2

CONTROL FLOW OF PROJECT

Stream to GPU, saturating global

device memory

Compress the data in the GPU

90% or more of the RAM is now free
— stream in more, and compress.

g J

Binary data file read (3d “pgm”)

\\

Vs

PERFORMANCE TRICKS

3D data, better than 2d data, can be fetched in
two cache lines:
One voxel cube and its 7 “minor” neighbors fits in

two cache lines, and therefore is very efficient to
fetch.

THE CODE

» General development was done in Visual Studio due to excellent CUDA
debugging tools (“Nsight”), but actual performance testing done on cluster
running Ubuntu

ECT BUID
~ Debug

cuda_utils.h wan -test.cpp file.h g .h pgm.cpp
*z Cube
_WAVELET3D_PGM_H
_WAVELET3D_PGM_H _ global veoid threshold(float *A idata, float lowpass, int N) {
i i = blockIdx.x * blockDim.x + threadIdx.x;
ix=nN) {
return;
}
1 A _idata[i] = fabsf({ A_idata[i]) <= lowpass ? 8.8 : A idata[i];
_size x, _size_y, _size z; ¥
ble _white;
e *_image; d waveletld fwd_kernel(
st int threadsPerBlock

t *A_device, float *Aout_device, size t N) {
128;

Cube();

Cube(: filename);

Cube(const &cube)3
& operator=(const &cube)

A filename };

filename);

t { return
return
return
return

_size_x; }
_size y; }

_size_z; }

_size x * _

100 %%

void waveletld inv kernel(fleoat *A device, T

¥

¥

const int

blocksPerGrid =

1

+ (int{(N) - 1) / threadsPerBlock;

waveletld_fwd<<< blocksPerGrid, threadsPerBlock »>>»(A_device, Aout_device, int(N));

nt threadsPerBlock = 128;

at *Aout_device, size t N) {

t int blocksPerGrid = 1 + (int(N) - 1) / threadsPerBlock;

waveletld_inv<<< blocksPerGrid, threadsPerBlock »>>{ A_device, Aout_device, int(N));

threshold kernel(f
st int threadsPerBloc

t *A device, T
128;

t lowpass, size t N) {

const int blocksPerGrid = 1 + (int{ N) - 1) / threadsPerBlock;

threshold<<< blocksPerGrid, threadsPerBlock »>>>(A_device, lowpass,

NSIGHT PERFORMANCE ANALYSIS

w wavelet3d - wavelet3d_d131209 001_Capture 000.nvreport

wavelet3d_d131209 ...pture_000.nvreport & X

©®

v]| Hierarchy | |FE] Flat

[CUDA Launches

All Kernel-Level Experiments

Select this experiment group to collect kernel-level experiments. Please note that this template adds significant overhead to the target application. When this group is selected, the following experiments will be run.

~ | Filter
Function Mame ? gir:ersi{:-rs ;ﬁ:ﬁmiﬂrs ? S:zrt Time ? ::i;l;atlc" ? Occupancy ? :::Ji.?:;d ? i:::;;ﬁp":? v aﬁ;”;:"; DSQ:TEU ? Ezf-.ﬂe;u-at'c" ? ;Zﬁ::;zcw v E::;c: ? ;:E‘f
| | Block (bytes) Block (bytes) Executed (bytes)
| 1 waveletld fwd {1,113} {128, 1,1} 654,130.061 100.288 75.00 % 34 0 0 PREFER_SHARED 0 Quadro K1000M
2 waveletld_fwd 1,11} {128,1,1} 942,326.329 93.536 75.00 % 34 0 0 PREFER_SHARED 0 Quadro K1000M
3 waveletld_fwd 1,1, 1} {128,1,1} 1197253485 91.040 75.00 % 34 0 0 PREFER_SHARED 0 Quadro K1000M
4 threshold 11,11} {128,1,1} 1321520621 4128 100.00 % 10 0 0 PREFER_SHARED 0 Quadro K1000M
5 waveletld_inv 1,11} {128,1, 1} 14797282.029 8.832 75.00 % 34 0 0 PREFER_SHARED 0 Quadro K1000M
& waveletld_inv 1,1, 1} {128,1,1;} 1635792.108 8.832 7500 % 34 0 0 PREFER_SHARED 0 Quadro K1000M
7 waveletld inv 11,11} {128,1,1y 1789757.517 8.800 75.00 % 34 0 0 PREFER_SHARED 0 Quadro K1000M

Experiment Description
Achieved FLOPS Calculates the achieved single/double floating point operations per second.
Achieved IOPS Calculates the achieved integer operations per second.

Achieved Occupancy

Calculates the occupancy achieved at runtime of the kernel.

Branch Statistics Collects efficiency metrics for the kernel's usage of flow control.

Instruction Statistics Collects instructions per clock cycle (IPC), instructions per warp (IPW) and SM activity.
Issue Efficiency

Memory Statistics - Global

Collects efficiency metrics for issuing the kernel's instructions.

Provides information about the global memory requests, transactions, and bandwidth.
Memory Statistics - Local Provides information about the local memory requests, transactions, and bandwidth.
Memory Statistics - Atomics Prowides information about atomic cperations and the resulting memory transactions.
Memory Statistics - Shared Provides information about the shared memory requests, transactions, and bandwidth.
Memoary Statistics - Texture Provides information about about texture memory usage, such as texture fetch rates and texture bandwidth.
Memory Statistics - Caches Provides information about the efficiency of the L1/12 caches.
Memory Statistics - Buffers Provides information about memory accesses to device memory as well as system memary.

Pipe Utilization Collects utilization metrics for the functional pipes of each SM.

for (

for

OVERLAPPING MEMCPYS

Stagger for best time usage!

int 1 = 0; 1 < numGPUs; ++1) {
CUDART: CHECK (- culclciSEit= i N
CUDART CHECK(cudaMalloc (<<<>>>);
CUDART CHECK(cudaMemcpyAsync (<<<>>>,

(int 1 = 0; i < numGPUs; ++1) {
CUDART. CHECK (' CUGCISISE il
wavelet3d fwd kernel (<<<>>>) ;

CUDART CHECK(cudaMemcpyAsync (<<<>>>,

cudaMemcpyHostToDevice)

cudaMemcpyDeviceToHost)

I

i

2D COMPRESSION RESULT
» Compression ratio: 185.97 (max err:0.003)

2D - 3D

Compression ratio will only improve,
drastically.

Particularly effective for data which represents
“lower dimensionality” in a higher-dimensional
space.

FUTURE (SOON) WORK

Utilization of all compute nodes

Actual compliant implementation of the real
JP3D standard — easier to import data

More types of wavelets — Bezier patches,
Daubechies for more vanishing moments

Much more accurate than Haar/similar and needed
for |P3D standard.

QUESTIONS!?

