
DECEMBER 9, 2013

Multi-GPU and the

Wavelet Transform
 Andre Kessler [6.338/18.337]

(SpaceX Combustion Group)

THE GRAPHICS PROCESSING UNIT

Good for big computation

NVIDIA’s Tesla K20 has…

 1.17 Tflops double / 3.52 Tflops

single

Not so great for big data

NVIDIA’s Tesla K20 has...

Just 5 GB

Improving, but not quickly

enough

Next-gen K40 has 12 GB

THE PROBLEM OF 3-D DATA
Very high fidelity 3-d data

takes up a lot of space.

Simple grayscale voxel

field with a single float

per point:

Up to N < 1,700

If one double per point,

Up to N < 850

If RGBA data, halve again:

Up to N < 425
http://www.mathworks.com/products/de

mos/image/3d_mri/mri_hori.gif

Following slides: http://www.home-barista.com/reviews/titan-grinder-project-scanning-

electron-microscope-sem-analysis-of-ground-coffee-t4205.html

WAVELET TRANSFORM
First simple example:

 𝑎, 𝑏 → (𝜇 = (𝑎 + 𝑏) 2 , 𝛿 = 𝑏 − 𝑎)

 (Following example from Ripples in Mathematics)

56 40 8 24 48 48 40 16

48 16 48 28 -16 16 0 -24

32 38 -32 -20 -16 16 0 -24

35 6 -32 20 -16 16 0 -24

WAVELET TRANSFORM

The idea is that we can turn our data into a set of

Coarse data – in this case, we’ve got one (35 on the left)

Detail coefficients – in this case, the 7 entries to the right

Notice the detail coefficients are smaller than the

original data. Now we’ll compress w/ a high-pass filter.

56 40 8 24 48 48 40 16

48 16 48 28 -16 16 0 -24

32 38 -32 -20 -16 16 0 -24

35 6 -32 20 -16 16 0 -24

WAVELET TRANSFORM

Again, an example:

http://www.ima.umn.edu/industrial/97_98/sweldens/fourth.html

http://www.ima.umn.edu/industrial/97_98/sweldens/fourth.html

WAVELET TRANSFORM – JPEG2000

Compression with

wavelets was the

choice for the ill-fated

JPEG2000 standard

“.jp2”

There is also a JP3D

standard for 3D data

http://upload.wikimedia.org/wikipedia/co

mmons/e/e0/Jpeg2000_2-

level_wavelet_transform-

lichtenstein.png

ZEROTREE/ZEROBIT ENCODING

WAVELETS + GPUS

Why is this combination particularly
attractive?

Computation is cheap

Compress/decompress is very cheap; host
to device memory reads are terribly
slow

So you can compress your data,
selectively decode a part and do your
computation, then recompress

GPU MEMORY TRANSFERS

From host memory: 250 GB/s

Coalesced reads are absolutely necessary

Fetching cache lines at a time (float4)

Part of a cluster for propulsion analysis

4x computer nodes

Hooked up with Infiniband

4x Tesla K20 each

(1.17 Tflops single / 3.52 Tflops double / 5 GB)

GPUDirect (Mellanox)

Overall, 18 Tflops double / 56 Tflops single

Only 96 GB total GPU RAM

MULTI-GPU PROGRAMMING

Peer-to-peer addressing

Unified virtual addressing

GPUDirect (https://developer.nvidia.com/gpudirect)

CONTROL FLOW OF PROJECT

Binary data file read (3d “pgm”)

Stream to GPU, saturating global
device memory

Compress the data in the GPU

90% or more of the RAM is now free
– stream in more, and compress.

PERFORMANCE TRICKS

3D data, better than 2d data, can be fetched in

two cache lines:

One voxel cube and its 7 “minor” neighbors fits in

two cache lines, and therefore is very efficient to

fetch.

THE CODE
 General development was done in Visual Studio due to excellent CUDA

debugging tools (“Nsight”), but actual performance testing done on cluster

running Ubuntu

NSIGHT PERFORMANCE ANALYSIS

OVERLAPPING MEMCPYS

for(int i = 0; i < numGPUs; ++i) {

 CUDART_CHECK(cudaSetDevice(i));

 CUDART_CHECK(cudaMalloc(<<<>>>);

 CUDART_CHECK(cudaMemcpyAsync(<<<>>>, cudaMemcpyHostToDevice));

}

for (int i = 0; i < numGPUs; ++i) {

 CUDART_CHECK(cudaSetDevice(i));

 wavelet3d_fwd_kernel(<<<>>>);

 CUDART_CHECK(cudaMemcpyAsync(<<<>>>, cudaMemcpyDeviceToHost));

}

• Stagger for best time usage!

2D COMPRESSION RESULT

Compression ratio: 185.97 (max err: 0.003)

2D  3D

Compression ratio will only improve,

drastically.

Particularly effective for data which represents

“lower dimensionality” in a higher-dimensional

space.

FUTURE (SOON) WORK

Utilization of all compute nodes

Actual compliant implementation of the real

JP3D standard – easier to import data

More types of wavelets – Bezier patches,

Daubechies for more vanishing moments

Much more accurate than Haar/similar and needed

for JP3D standard.

QUESTIONS?

