
DECEMBER 9, 2013

Multi-GPU and the

Wavelet Transform
 Andre Kessler [6.338/18.337]

(SpaceX Combustion Group)

THE GRAPHICS PROCESSING UNIT

Good for big computation

NVIDIA’s Tesla K20 has…

 1.17 Tflops double / 3.52 Tflops

single

Not so great for big data

NVIDIA’s Tesla K20 has...

Just 5 GB

Improving, but not quickly

enough

Next-gen K40 has 12 GB

THE PROBLEM OF 3-D DATA
Very high fidelity 3-d data

takes up a lot of space.

Simple grayscale voxel

field with a single float

per point:

Up to N < 1,700

If one double per point,

Up to N < 850

If RGBA data, halve again:

Up to N < 425
http://www.mathworks.com/products/de

mos/image/3d_mri/mri_hori.gif

Following slides: http://www.home-barista.com/reviews/titan-grinder-project-scanning-

electron-microscope-sem-analysis-of-ground-coffee-t4205.html

WAVELET TRANSFORM
First simple example:

 𝑎, 𝑏 → (𝜇 = (𝑎 + 𝑏) 2 , 𝛿 = 𝑏 − 𝑎)

 (Following example from Ripples in Mathematics)

56 40 8 24 48 48 40 16

48 16 48 28 -16 16 0 -24

32 38 -32 -20 -16 16 0 -24

35 6 -32 20 -16 16 0 -24

WAVELET TRANSFORM

The idea is that we can turn our data into a set of

Coarse data – in this case, we’ve got one (35 on the left)

Detail coefficients – in this case, the 7 entries to the right

Notice the detail coefficients are smaller than the

original data. Now we’ll compress w/ a high-pass filter.

56 40 8 24 48 48 40 16

48 16 48 28 -16 16 0 -24

32 38 -32 -20 -16 16 0 -24

35 6 -32 20 -16 16 0 -24

WAVELET TRANSFORM

Again, an example:

http://www.ima.umn.edu/industrial/97_98/sweldens/fourth.html

http://www.ima.umn.edu/industrial/97_98/sweldens/fourth.html

WAVELET TRANSFORM – JPEG2000

Compression with

wavelets was the

choice for the ill-fated

JPEG2000 standard

“.jp2”

There is also a JP3D

standard for 3D data

http://upload.wikimedia.org/wikipedia/co

mmons/e/e0/Jpeg2000_2-

level_wavelet_transform-

lichtenstein.png

ZEROTREE/ZEROBIT ENCODING

WAVELETS + GPUS

Why is this combination particularly
attractive?

Computation is cheap

Compress/decompress is very cheap; host
to device memory reads are terribly
slow

So you can compress your data,
selectively decode a part and do your
computation, then recompress

GPU MEMORY TRANSFERS

From host memory: 250 GB/s

Coalesced reads are absolutely necessary

Fetching cache lines at a time (float4)

Part of a cluster for propulsion analysis

4x computer nodes

Hooked up with Infiniband

4x Tesla K20 each

(1.17 Tflops single / 3.52 Tflops double / 5 GB)

GPUDirect (Mellanox)

Overall, 18 Tflops double / 56 Tflops single

Only 96 GB total GPU RAM

MULTI-GPU PROGRAMMING

Peer-to-peer addressing

Unified virtual addressing

GPUDirect (https://developer.nvidia.com/gpudirect)

CONTROL FLOW OF PROJECT

Binary data file read (3d “pgm”)

Stream to GPU, saturating global
device memory

Compress the data in the GPU

90% or more of the RAM is now free
– stream in more, and compress.

PERFORMANCE TRICKS

3D data, better than 2d data, can be fetched in

two cache lines:

One voxel cube and its 7 “minor” neighbors fits in

two cache lines, and therefore is very efficient to

fetch.

THE CODE
 General development was done in Visual Studio due to excellent CUDA

debugging tools (“Nsight”), but actual performance testing done on cluster

running Ubuntu

NSIGHT PERFORMANCE ANALYSIS

OVERLAPPING MEMCPYS

for(int i = 0; i < numGPUs; ++i) {

 CUDART_CHECK(cudaSetDevice(i));

 CUDART_CHECK(cudaMalloc(<<<>>>);

 CUDART_CHECK(cudaMemcpyAsync(<<<>>>, cudaMemcpyHostToDevice));

}

for (int i = 0; i < numGPUs; ++i) {

 CUDART_CHECK(cudaSetDevice(i));

 wavelet3d_fwd_kernel(<<<>>>);

 CUDART_CHECK(cudaMemcpyAsync(<<<>>>, cudaMemcpyDeviceToHost));

}

• Stagger for best time usage!

2D COMPRESSION RESULT

Compression ratio: 185.97 (max err: 0.003)

2D 3D

Compression ratio will only improve,

drastically.

Particularly effective for data which represents

“lower dimensionality” in a higher-dimensional

space.

FUTURE (SOON) WORK

Utilization of all compute nodes

Actual compliant implementation of the real

JP3D standard – easier to import data

More types of wavelets – Bezier patches,

Daubechies for more vanishing moments

Much more accurate than Haar/similar and needed

for JP3D standard.

QUESTIONS?

