
WAVELET ENCODING AND MULTI-GPU PROGRAMMING

ANDRE KESSLER

Abstract. We investigate compression of large-volume spatial data using the wavelet transform, com-
puted massively in parallel on NVIDIA graphics processing units (GPUs). In particular, Haar basis
wavelets are used to achieve compression ratios of [100x] or more. Computation is done over a set of
computing nodes consisting of multiple nodes and multiple GPUs per node. Significantly more data
than can be stored on-board the individual GPUs is streamed on and successfully compressed. After the
compression, the data is ready to be analyzed or manipulated by other tools, after which the changed
data or extracted features will be decompressed and stored.

Keywords. CUDA, wavelets, multi-GPU, C++, Haar basis, data compression

1. Introduction & Motivation

The ability to process large volumes of spatial data is very important to a wide range of scientific dis-
ciplines. Tools to analyze and perform computation on such data are used everywhere from visualizing
the results of nuclear magnetic resonance imaging (MRI) scans to processing flight video for aeronau-
tics. Such large-scale computation lends itself well to the growing field of general-purpose computing
on graphics processing units (GPGPU), which allows parallelism on a massive scale for a fraction of
the cost of such machines in the past.

Raw computation is a particular strong suit of current GPUs–individual cards can hold up to 3.52
teraflops of compute power alone–but the dedicated on-board memory available to GPUs has a lot
of room to grow. This is a problem for applications that are very “data-intensive,” since the speed of
memory transfers from host memory to a GPU is on the scale of an order of magnitude slower than
on-chip L1 cache and shared memory accesses.[cite].

We would like to have some way of significantly compressing spatial data so that it fits in the lim-
ited on-board memory of a GPU, and decompressed as needed for computation on the same device.
Realistically, we may have terabytes of data–in three spatial dimensions, a uniform float grid of size
4, 000× 4, 000× 4, 000 is already over 2 TB in size.

The wavelet transform will prove to be particularly e�ective for our purposes. Originally developed
for feature extraction of seismic data[cite], the wavelet transform is particular adept at “picking out”
areas of data that are well-correlated locally, and thereby can represent sections of highly self-similar
data with a small amount of information, while retaining enough to reconstruct fine features in areas
of detail.

2. Wavelet Transform

We will use the Haar wavelet, which can be described as follows. Given a sequence of 2n data points
c0, c1, . . . , c2n−1 which we wish to compress, we will split it into two sets: the even-indexed values and
the odd-indexed values. The even-indexed values will be kept as coarse coe�cients, and the odd-indexed
ones will be replaced by details. We can accomplish this by setting

1

Figure 1. The 2-D wavelet transform as computed by our GPU code. From top down
and left to right: original, forward transform, thresholding (9.8× compression), and
inverse transform.

c+1
k = (c2k + c2k+1)/2

d +1
k = c2k+1 − c2k

That is, the coarse coe�cient on the next level is set to the average of the even and odd point, while
the detail coe�cient is set to be equal to their di�erence. Notice that given our coarse coe�cient c+1

k
and detail d +1

k , we can perfectly reconstruct the original values c2k and c2k+1. Furthermore, the coarse
coe�cients represent a downsampled version of the original data, while the details represent corrections

2

to the average of the data. Details are less important, and we may ignore some while still retaining the
ability to reconstruct our data fairly well. See in particular Latu [3] and Sweldens [5].

For example, consider Figure 1. We have an image of a rocket launch (upper left) that we wish to
compress. The forward transform of the image is to the right: the downsampling (“coarse coe�cients”)
can be seen as the smaller copy of the rocket image in the upper leftmost corner. Surrounding the small
image are three sets of “details”: the one to the right are the x -details, to the bottom are the y -details,
and diagonally adjacent are the x y -details1. This lower level is surrounded by all of the even finer detail
coe�cients.

After the forward transform, we wish to compress the data. This we accomplish by thresholding,
as can be seen in the lower left image. For each level, detail coe�cients that are less than a particular
threshold value are chosen to be zeroed out. In this particular image, we achieve 9.8× compression, and
the inverse transform of the thresholded values (shown to the lower right) is still virtually indistinguish-
able from the original image. The particular threshold value was chosen so that some details would still
be visible in the picture; see Figure ?? for much more signficant compression. Note that despite the
“blockiness” seen in more uniform areas of the picture, details like the writing on the rocket, sounding
tower, and cloud structure are still remarkably well preserved.

Figure 2. Much harsher thresholdings result in more artifacts: 545.33× compression
on the left and 1342.18× compression on the right.

3. Data Storage Techniques

Indexing into our data array presents a variety of challenges. Row-major order is inconvenient for
several reasons, the first of which being that our data is structured spatially. For any dimension higher
than 1-D, row-major order does not well relate to the spatial locality of the data (since adjacent cells
are, on average, row_stride/2 apart). This is a particular concern for GPUs, where memory locality
allowing coalesced reads is of utmost importance [6].

1Fundamentally, the 2-D wavelet transform has this structure due to its being written as a tensor product of two
1-D wavelet transforms. When we move to the 3-D transform, the 7 adjacent detail regions will correspond to
{x , y, z , x y, y z , z x , x y z}-details.

3

Table 1. Morton-order indexing of a 4× 4 array

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

The solution to these potential issues that we used is the Morton-order indexing scheme, which can
be seen in Table 1. It relates to the natural depth-first order of traversal for a quadtree, and exhibits
good “chunking” of the data into spatially local sections. For simplicity, the 2-D curve and code is
depicted here, but an equivalent traversal exists for 3-D data using a natural depth-first traversal of an
octree.

The code for to convert between (x , y) coordinates and Morton order can be accomplished as follows:
suppose x = x1x2x3x4 and y = y1 y2 y3 y4, where the right-hand sides are the digits of x and y in binary.
Expanding the digits x10x20x30x4 and y10y20y30y40 and logical-OR-ing produces y1x1 y2x2 y3x3 y4x4,
which turns out to be the desired order.

1 __host__ __device__ __forceinline__ size_t expand_bits(size_t x) {

2 x = (x | (x << 16)) & 0x0000ffff0000ffffL;

3 x = (x | (x << 8)) & 0x00ff00ff00ff00ffL;

4 x = (x | (x << 4)) & 0x0f0f0f0f0f0f0f0fL;

5 x = (x | (x << 2)) & 0x3333333333333333L;

6 x = (x | (x << 1)) & 0x5555555555555555L;

7 return x;

8 }

9

10 __host__ __device__ __forceinline__ size_t xy_to_index(size_t x, size_t y) {

11 return expand_bits(x) | (expand_bits(y) << 1);

12 }

Listing 1. Morton-order conversion using bit-shifts

In our program, all multi-dimensional data will be stored in a flat 1-D array and indexed according
to the Morton order. This will also allow us to create a simple data-packing scheme after the wavelet
transform is complete: sparse data may be associated to its spatial location with a Morton index. Sorting
the array produces an implicit quadtree in memory, which we can then binary search to find particular
nodes.

For a fast key-value radix sort in CUDA, we turn to Duane Merrill’s excellent CUDA Unbound
(CUB)2 components library. The library’s cub::DeviceRadixSort can sort up to 0.97 billion 32-bit
key-value pairs per second on a Tesla K20. On the

4. Predictions & Results

The computing environment is a cluster of four nodes dedicated for Propulsion Analysis at Space
Exploration Technologies (SpaceX). Each node has four NVIDIA Tesla K20m cards for computation;

2http://nvlabs.github.io/cub/
4

Table 2. Computing environment specifications

Specifications 1× Tesla K20m 4× Tesla K20m Total for cluster

double flops 1.17 Tflops 4.68 Tflops 18.72 Tflops
float flops 3.52 Tflops 14.08 Tflops 56.32 Tflops
RAM (GDDR5) 4.8 GB 19.2 GB 76.8 GB
Bandwidth max 208 GB/s 832 GB/s 3328 GB/s

the total computing power is described in Table 2. Each node is hooked up with Infiniband and has
GPUDirect3 enabled; these allow transfers at speeds of up to about 25 Gbits/sec any two nodes.

Given N GB of data on any single node that needs to be compressed, we are first clearly limited by
the bandwidth of the network. The next most immediate limitation is the amount of RAM on any
one individual card. The theoretical minimum time to completely fill the onboard RAM of one Tesla
K20m according to these specifications is approximately 0.02 sec. Of course; we cannot completely fill
the RAM of a card; we will need to start o� with perhaps half of the RAM filled, wavelet-transform the
onboard data, compress, and continue. The important theoretical information is that the time of this
host→ device memory transfer should be on the order of 10−2 seconds. For the test cases, we used an
SVG file scaled to the desired resolution and then exported as a binary PGM4 file. The threshold was
chosen as a decaying fixed value: on the finest level, anything less than a 100 on the color scale black
(0)→ white (255) is removed; on the next coarser level, 50 and lower is removed, 25 on the next, and
so on. By way of example, this compression is more coarse than Figure 1, but better resolution than
the compression in Figure 2. The jump to 8 GB is the point at which the multi-GPU setup kicks in;

Table 3. 2-D Timing Runs

Dimensions Memory CPU Fwd CPU Inv GPU Fwd GPU Inv Compression
210 × 210 2.0 MB 0.05 s 0.05 s 0.01 s 0.01 s 87.15×
211 × 211 32.0 MB 0.20 s 0.20 s 0.05 s 0.05 s 97.981×
212 × 212 128.0 MB 0.79 s 0.76 s 0.20 s 0.18 s 115.47×
213 × 213 512.0 MB 3.34 s 3.25 s 0.81 s 0.82 s 120.375×
214 × 214 2.0 GB 19.74 s 17.14 s 3.28 s 3.01 s 234.295×
215 × 215 8.0 GB 131.18 s 128.01 s 3.31 3.45 346×5

we split up the data into four chunks and, in parallel, dispatch them to the GPUs.
Hence, we will be most successful we can stagger the memory copying so that it completes when the

wavelet transform of previous data completes, and then the computation can continue without pause
onto the next chunk of data.

5. Sample Code

We store results of the transform in the Mallat ordering as described in Latu [3]. This is then
transcribed in the Morton-order curve form to actually be indexed in memory.

3https://developer.nvidia.com/gpudirect
4Portable Gray Map, from the netpbm standard. See http://netpbm.sourceforge.net/doc/pgm.html.

5

1 template<typename T>

2 void forward_base(T *field_device, size_t N, size_t &finestStep, int maxLevels) {

3 T *temp = new T[N*N];

4 int levels = 0;

5 for(int step = N; step > 1; step >>= 1) {

6 wavelet_gpu::splice_x (field_device, temp, step);

7 wavelet_gpu::predict_x(field_device, step, FORWARD_DIRECTION);

8 wavelet_gpu::update_x (field_device, step, FORWARD_DIRECTION);

9

10 wavelet_gpu::splice_y (field_device, temp, step);

11 wavelet_gpu::predict_y(field_device, step, FORWARD_DIRECTION);

12 wavelet_gpu::update_y (field_device, step, FORWARD_DIRECTION);

13 levels++; finestStep = step;

14 if(levels >= maxLevels) {

15 break;

16 }

17 }

18 delete [] temp;

19 }

Listing 2. C++ wrapper for kernel launches in computation of the forward transform.

The inverse is, indeed, the exact inverse of the predict step; in the 3-D code, splice/predict/update
of z occurs last in the forward transform while update/predict/combine occurs first in the inverse
transform.

1 template<typename T>

2 void inverse_base(T *field_device, size_t N, size_t finestStep) {

3 T *temp = new T[N*N];

4 for(size_t step = finestStep; step <= N; step <<= 1) {

5 wavelet_gpu::update_y (field_device, step, INVERSE_DIRECTION);

6 wavelet_gpu::predict_y(field_device, step, INVERSE_DIRECTION);

7 wavelet_gpu::combine_y (field_device, temp, step);

8

9 wavelet_gpu::update_x (field_device, step, INVERSE_DIRECTION);

10 wavelet_gpu::predict_x(field_device, step, INVERSE_DIRECTION);

11 wavelet_gpu::combine_x (field_device, temp, step);

12 }

13 delete [] temp;

14 }

Listing 3. C++ wrapper for the inverse computation.

Conveniently, the Mallat order memory splice and choice of blocks prior to the update step guaran-
tees the memory predicted/updated will not be overwritten.

6

1 __global__ void mallat_predict_x(double *field_d, size_t N, int direction) {

2 size_t x, y, loadIndex, storIndex, globalIndex, global_x, global_y;

3 double predict;

4 x = threadIdx.x; y = threadIdx.y;

5 loadIndex = xy_to_index(BLOCKDIM_X * blockIdx.x + x,

6 BLOCKDIM_Y * blockIdx.y + y);

7 global_x = index_to_x(globalIndex);

8 global_y = index_to_y(globalIndex);

9 storIndex = xy_to_index(global_x + N / 2, global_y);

10

11 predict = field_d[loadIndex];

12 __syncthreads();

13 field_d[storIndex] = field_d[storIndex] - direction * predict;

14 }

Listing 4. Sample kernel for the forward-predict step, launched by wavelet_gpu::predict_x

The updates/predicts for x , y and z are all similarly structured. In all, the major cost as determined
by profiling is the memory restructuring between full-level predict/updates.

6. Future work

There are many directions in which this project may be further developed. The first point to note is
that this program is itself a basis for a library, rather than a pure application: aside from a basic faster
wavelet transform, this project allows for the development of programs that need to deal with extremely
large data sets on the GPU– and would benefit from having this data compressed but “on-demand” to
be partially decompressed entirely in device memory. It will be interesting to produce visualizations for
flight data or MRI scans using this library and explore the various statistics and information about the
data that we can compute using the GPU.

With respect to the project itself, both the multi-GPU and wavelet aspects has several possible im-
provements. We implemented a variant of the Haar basis wavelet, but there are many other fami-
lies of wavelets available, some of which may o�er better compression and more accuracy at the ex-
pense of slightly more computation. The Haar wavelet is itself the most basic case of the more general
Daubechies wavelet, and there are many other possibilities including Bezier surface patches.

The JPEG2000 and JP3D standards themselves are based on wavelet methods, and with some de-
velopment e�ort the parallelization techniques used here could be used in an implementation of those
standards. While on average the file formats do not see much use by the general public, they are still
highly useful image and video formats for industrial applications, and

Inter-node communication was less explored with this project than it might have been, and it will be
useful to see how the full cluster can be exploited for maximum performance. From the use of the shared
network file system, one can always split up the data initially so each node will work on its own piece
and be responsible for that piece only, but if certain pieces of the data end up being thresholded much
more than others, it will most likely result in much better performance if some kind of load-balancing
can be implemented over the network.

7

7. Acknowledgments

I would like to thank Dr. Adam Lichtl of SpaceX for suggesting the focus of the project, providing
access to some of SpaceX’s extensive GPU computing resources–without which this project simply
would not have been possible–as well as for many helpful discussions. I would also like to thank
Prof. Alan Edelman of MIT for the opportunity to work on this project for his 6.338/18.337 Parallel
Computing course.

References
1. Pamela Cosman and Kenneth Zeger, Memory Constrained Wavelet Based Image Coding, 5 (1998), no. 9, 221–223.
2. Tero Karras, Maximizing parallelism in the construction of bvhs, octrees, and kd trees, Eurographics/ACM SIGGRAPH

Symposium on High Performance Graphics, The Eurographics Association, 2012, pp. 33–37.
3. G Latu, Sparse data structure design for wavelet-based methods, ESAIM: Proceedings 34 (2010), no. December 2011,

240–276.
4. Anthony E. Nocentino and Philip J. Rhodes, Optimizing memory access on gpus using morton order indexing, Proceedings

of the 48th Annual Southeast Regional Conference (New York, NY, USA), ACM SE ’10, ACM, 2010, pp. 18:1–18:4.
5. Wim Sweldens and Peter Schroder, Building Your Own Wavelets at Home.
6. N. Wilt, The cuda handbook: A comprehensive guide to gpu programming, Pearson Education, 2013.

Dept. of Mathematics, Massachusetts Institute of Technology, Cambridge, MA
E-mail address: akessler@mit.edu
URL: www.mit.edu/∼akessler

8

