
Skip Lists in Julia

Drew Minnear

Massachusetts Institute of Technology

December 8, 2013

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 1 / 14



Skip Lists Introduction

What are Skip Lists?

Randomized data structure invented by William Pugh in the 80s.

Great for point and range queries in a set with an order.

Insert, search, and delete all expected to be O(log n)!

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 2 / 14



Skip Lists Introduction

What are Skip Lists?

Randomized data structure invented by William Pugh in the 80s.

Great for point and range queries in a set with an order.

Insert, search, and delete all expected to be O(log n)!

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 2 / 14



Skip Lists Introduction

What are Skip Lists?

Randomized data structure invented by William Pugh in the 80s.

Great for point and range queries in a set with an order.

Insert, search, and delete all expected to be O(log n)!

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 2 / 14



Skip Lists Skip List Algorithms

Inserting

Insert(skip, k) inserts k into Skip List skip

Search for largest item on bottom layer of skip that is less than or
equal to k.

Insert k on bottom row after element found in search. Correct linked
list on this layer to include k .

Flip a coin. If heads move up a level and insert k above its location
on the level below, making sure to preserve correctness of linked list.
Repeat this step until a tails is flipped.

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 3 / 14



Skip Lists Skip List Algorithms

Inserting

Insert(skip, k) inserts k into Skip List skip

Search for largest item on bottom layer of skip that is less than or
equal to k.

Insert k on bottom row after element found in search. Correct linked
list on this layer to include k .

Flip a coin. If heads move up a level and insert k above its location
on the level below, making sure to preserve correctness of linked list.
Repeat this step until a tails is flipped.

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 3 / 14



Skip Lists Skip List Algorithms

Inserting

Insert(skip, k) inserts k into Skip List skip

Search for largest item on bottom layer of skip that is less than or
equal to k.

Insert k on bottom row after element found in search. Correct linked
list on this layer to include k .

Flip a coin. If heads move up a level and insert k above its location
on the level below, making sure to preserve correctness of linked list.
Repeat this step until a tails is flipped.

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 3 / 14



Skip Lists Skip List Algorithms

Inserting

Insert(skip, k) inserts k into Skip List skip

Search for largest item on bottom layer of skip that is less than or
equal to k.

Insert k on bottom row after element found in search. Correct linked
list on this layer to include k .

Flip a coin. If heads move up a level and insert k above its location
on the level below, making sure to preserve correctness of linked list.
Repeat this step until a tails is flipped.

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 3 / 14



Skip Lists Skip List Algorithms

Searching

Search(skip, k) returns true if k is in Skip List skip, false if it is not.

Find largest item in skip that is less than or equal to k on top level.
Drop down to analogous item on next lower level.

Repeat the first step on the current level. Continuing repeating until
k is found, in which case return true, or it is impossible to continue,
in which case return false.

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 4 / 14



Skip Lists Skip List Algorithms

Searching

Search(skip, k) returns true if k is in Skip List skip, false if it is not.

Find largest item in skip that is less than or equal to k on top level.
Drop down to analogous item on next lower level.

Repeat the first step on the current level. Continuing repeating until
k is found, in which case return true, or it is impossible to continue,
in which case return false.

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 4 / 14



Skip Lists Skip List Algorithms

Searching

Search(skip, k) returns true if k is in Skip List skip, false if it is not.

Find largest item in skip that is less than or equal to k on top level.
Drop down to analogous item on next lower level.

Repeat the first step on the current level. Continuing repeating until
k is found, in which case return true, or it is impossible to continue,
in which case return false.

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 4 / 14



Skip Lists Skip List Algorithms

Deleting

Delete(skip, k) deletes the first instance of k from skip.

Search for first instance of k in the bottom level of skip.

Remove k from this level and repair linked list. Move up a level.
Repeat this step until k is no longer in the current level.

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 5 / 14



Skip Lists Skip List Algorithms

Deleting

Delete(skip, k) deletes the first instance of k from skip.

Search for first instance of k in the bottom level of skip.

Remove k from this level and repair linked list. Move up a level.
Repeat this step until k is no longer in the current level.

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 5 / 14



Skip Lists Skip List Algorithms

Deleting

Delete(skip, k) deletes the first instance of k from skip.

Search for first instance of k in the bottom level of skip.

Remove k from this level and repair linked list. Move up a level.
Repeat this step until k is no longer in the current level.

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 5 / 14



Skip Lists Benchmarks

Inserting

Time to create data structure and insert 1,000,000 random integers in
the range of Uint32.

Data Structure Elapsed Time

IntSet 0.4679
Set 1.5373
Dict 0.2851
SkipList 35.9977

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 6 / 14



Skip Lists Benchmarks

Inserting

Time to create data structure and insert 1,000,000 random integers in
the range of Uint32.

Data Structure Elapsed Time

IntSet 0.4679
Set 1.5373
Dict 0.2851
SkipList 35.9977

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 6 / 14



Skip Lists Benchmarks

Searching for Item in Data Structure

Time to conclude that an item is in data structure of 1,000,000 items.
Does not include time to initialize data structure.

Data Structure Elapsed Time

IntSet 9.0×10−6

Set 1.28×10−5

Dict 9.0×10−6

SkipList 5.0×10−5

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 7 / 14



Skip Lists Benchmarks

Searching for Item in Data Structure

Time to conclude that an item is in data structure of 1,000,000 items.
Does not include time to initialize data structure.

Data Structure Elapsed Time

IntSet 9.0×10−6

Set 1.28×10−5

Dict 9.0×10−6

SkipList 5.0×10−5

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 7 / 14



Skip Lists Benchmarks

Searching for Item not in Data Structure

Time to conclude that an item is not in data structure of 1,000,000
items. Does not include time to initialize data structure.

Data Structure Elapsed Time

IntSet 8.5×10−6

Set 9.8×10−6

Dict 9.0×10−6

SkipList 5.5×10−5

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 8 / 14



Skip Lists Benchmarks

Searching for Item not in Data Structure

Time to conclude that an item is not in data structure of 1,000,000
items. Does not include time to initialize data structure.

Data Structure Elapsed Time

IntSet 8.5×10−6

Set 9.8×10−6

Dict 9.0×10−6

SkipList 5.5×10−5

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 8 / 14



Skip Lists Benchmarks

Deleting

Time to remove an item from data structure of 1,000,000 items.

Data Structure Elapsed Time

IntSet 1.12×10−5

Set 1.60×10−5

Dict 1.22×10−5

SkipList 7.33×10−5

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 9 / 14



Skip Lists Benchmarks

Deleting

Time to remove an item from data structure of 1,000,000 items.

Data Structure Elapsed Time

IntSet 1.12×10−5

Set 1.60×10−5

Dict 1.22×10−5

SkipList 7.33×10−5

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 9 / 14



Skip Lists Some Last Remarks

When Should Skip Lists be Used?

For range queries. The other data structures are forced to search for
each item in the range iteratively.

Much faster to do this in a skip list. Consider if your range was real
numbers between 1 and 10. (There are uncountably many.)

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 10 / 14



Skip Lists Some Last Remarks

When Should Skip Lists be Used?

For range queries. The other data structures are forced to search for
each item in the range iteratively.

Much faster to do this in a skip list. Consider if your range was real
numbers between 1 and 10. (There are uncountably many.)

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 10 / 14



Distributed Skip List Introduction

Distributed Skip Lists

Distributed Skip Lists are a collection of Skip Lists on separate
processes that act as a unified Skip List.

Prior work has been done in the form of Skip Trees and Skip Tree
Graphs.

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 11 / 14



Distributed Skip List Introduction

Distributed Skip Lists

Distributed Skip Lists are a collection of Skip Lists on separate
processes that act as a unified Skip List.

Prior work has been done in the form of Skip Trees and Skip Tree
Graphs.

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 11 / 14



Distributed Skip List Algorithms

Inserting

Insert(dskip, k) inserts k into Distributed Skip List dskip

Randomly choose a process. Insert k into the skip list on that process.

O
(

log n
p

)

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 12 / 14



Distributed Skip List Algorithms

Inserting

Insert(dskip, k) inserts k into Distributed Skip List dskip

Randomly choose a process. Insert k into the skip list on that process.

O
(

log n
p

)

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 12 / 14



Distributed Skip List Algorithms

Inserting

Insert(dskip, k) inserts k into Distributed Skip List dskip

Randomly choose a process. Insert k into the skip list on that process.

O
(

log n
p

)

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 12 / 14



Distributed Skip List Algorithms

Searching

Search(dskip, k) returns true if k is in Distributed Skip List dskip

Search for k in all processes. Reduce result with or.

O
(

log
(
n
p

)
+ p

)

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 13 / 14



Distributed Skip List Algorithms

Searching

Search(dskip, k) returns true if k is in Distributed Skip List dskip

Search for k in all processes. Reduce result with or.

O
(

log
(
n
p

)
+ p

)

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 13 / 14



Distributed Skip List Algorithms

Searching

Search(dskip, k) returns true if k is in Distributed Skip List dskip

Search for k in all processes. Reduce result with or.

O
(

log
(
n
p

)
+ p

)

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 13 / 14



Distributed Skip List Algorithms

Deleting

Delete(dskip, k) removes an instance of k from Distributed Skip List
dskip.

Search for k in all processes. Randomly pick a process to delete k
from.

O
(

log
(
n
p

)
+ p

)

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 14 / 14



Distributed Skip List Algorithms

Deleting

Delete(dskip, k) removes an instance of k from Distributed Skip List
dskip.

Search for k in all processes. Randomly pick a process to delete k
from.

O
(

log
(
n
p

)
+ p

)

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 14 / 14



Distributed Skip List Algorithms

Deleting

Delete(dskip, k) removes an instance of k from Distributed Skip List
dskip.

Search for k in all processes. Randomly pick a process to delete k
from.

O
(

log
(
n
p

)
+ p

)

Drew Minnear (MIT) Skip Lists in Julia December 8, 2013 14 / 14


	Skip Lists
	Introduction
	Skip List Algorithms
	Benchmarks
	Some Last Remarks

	Distributed Skip List
	Introduction
	Algorithms


