
MATLAB-to-Julia Translator

Lydia A. Krasilnikova

December 23, 2013

Abstract

Some of the fields that could most benefit from parallelization primar-
ily use programming languages that were not designed with parallel com-
puting in mind. The MATLAB-to-Julia translator proposed here begins
to approach this problem starting with MATLAB, which is syntactically
close to Julia. The translator does much of the tedious work of converting
source code from MATLAB to Julia, in hopes that a MATLAB user who
is curious about Julia could then spend most of their first moments with
the language exploring its capacity to improve their existing programs
rather than wrangling with bugs or a new syntax. Hopefully with time
and input from other Julia users this translator will become a powerful
tool and perhaps lower the barrier to switching to Julia.

1 Background

Many fields, such as mechanical engineering, linear algebra, and computational
biology, have massive potential for parallelization and a good fit with Julia’s
strengths. Unfortunately the existing code in these fields is already in other
languages, and this on its own limits users’ ability to try using Julia. There
is first the problem of needing to learn and code in a new language, which is
often intimidating. In addition the existing code, which could be chopped up
and reused, cannot be copy-pasted into Julia like it could the original language.

There are currently no tools for translating source code into Julia from an-
other language. The benefit of such tools could be vast: users could have more
flexibility in their programming language, more users could be exposed to Julia,
and fields for which Julia might be a good fit might be more likely to try it on.

2 Project Goals

The goal of this project is to build an easy-to-use tool for translating MATLAB
source code into Julia. The translator does not need to be comprehensive, but
it does need to be able to accurately translate enough of the most common
statements that most of the tedious work of translating the code by hand is
eliminated. The hope is that the user can then review the translated Julia code
and perhaps make minor corrections, but be able to quickly move on to the
more interesting task of parallelizing their code.

Because the focus of this project is to minimize barriers for potential Julia
users, it is important that it be easy and pleasant to use. Therefore another

1



goal of the project is to make the translator as accessible as possible, minimizing
load time and barriers to access. In addition, it is important that the translated
code be easy to read and that is feels like a di↵erent version of the user’s own
original code. It is important that the translation not introduce new bugs, if
possible, and that any new bugs that are introduced be easily identified and
resolved. It is also important that the personal style of the author who wrote
the original code is preserved in the translation.

3 Implementation

The translator consists of two parts: the first is a front end user interface,
written in Java; the second is the back end translator, written in Perl.

The Java user interface allows users to type in MATLAB source code or load
it from a file and then manipulate it. When the MATLAB code is ready the
user can press a button to translate the source code into Julia.

When the user initiates translation, the MATLAB source code is saved to
a temporary file in the same directory as our program and control is handed
over to the back end, the Perl translator script. The Perl translator script reads
the temporary MATLAB file, translates it into Julia, and saves the translation
to a second temporary file. Control is finally returned to the user interface,
which reads in and displays the translated Julia code and deletes both of the
temporary files.

The user is then able to manipulate and save the resulting Julia code to a
file, or continue editing and translating the MATLAB source code.

3.1 Front End (Java)

The front end of the translator is the user interface; its purpose is to communi-
cate between the user and the back end. The fron end has two large text areas:
the leftmost one takes in the MATLAB source code. This input can be typed in
by the user directly into the text area. It can also be loaded into the program
by entering the address in the text field below and pressing the “load MATLAB
code” button directly to its right. (This button is disabled until the user enters
a location.) The MATLAB text area will display any text that is loaded in from
the input file. This text can be edited in the text area.

At the very bottom of the window is a button labelled “translate!” When the
user presses this button, the interface saves the MATLAB source code that is
currently in the leftmost text area to a temporary file and triggers the back end
Perl script. When the Perl script is done translating and saving the translated
Julia code to a file, the Java interface loads the contents of this file into the
rightmost text area and deletes the temporary files.

This text area was disabled, but the translated text inside of it can now be
edited and manipulated in order to correct any mistakes the translator made.
The user may save the Julia code that is currently in the text area by entering
a location in the field below the text area and pressing the button that says,
“save Julia code.”

2



Figure 1: A screenshot of the translator interface.

The user can continue editing both the MATLAB and the Julia code. When-
ever a new translation is performed, the translated text replaces the previous
contents of the Julia text area. Similarly, when new MATLAB code is loaded
from a file, it replaces the previous MATLAB code and any changes the user
may have made.

The front end Java interface waits for the Perl script to complete its job from
a background thread. This allows the interface to remain responsive even while
the Perl script is running. However, any changes the user might make would not
be included in the current translation; therefore the fields and buttons of the
interface are disabled until the Perl script is done running, and the background
color of the interface changes to a dark grey. The interface is similarly disabled
when there are error messages to the user.

3.2 Back End (Perl)

The Perl back end reads in the user’s MATLAB code from a temporary file that
was saved by the Java user interface. The back end’s primary job is to translate
the MATLAB source code into Julia. It then saves the Julia code to another
temporary file.

Because MATLAB and Julia are syntactically very similar, most statements
can be translated using regular expressions. When regular expressions fit a
problem well, Perl can be a very powerful solution. In our case many of the
statements are translated using just one line of code. Unfortunately the excep-
tions to this rule are much longer.

The lines translating each type of statement are separated from each other.
Translation capability can be added simply by adding more lines of regular
expressions between the existing groups of expressions. Because the front end

3



and back end are separate, the back end can be edited and tested without
restarting the front end or reloading the test code.

3.3 Supported Di↵erences Between MATLAB and Julia

The following are the di↵erences between MATLAB and Julia that the translator
can currently translate.

MATLAB code Julia translation

Comments % comment # comment

%{ #

Block Comments comment # comment

%} #

Semicolons a = 1 + 2; b = 4; a = 1 + 2; b = 4

Commas a = 1 + 2, b = 4, a = 1 + 2; b = 4

‘hello’ “hello”

Quotes ‘hi’ “hi”

‘h’ ‘h’

Modulus mod(a, b) a % b

mod(a + b, c + d) (a + b) % (c + d)

Bitwise XOR bitxor(a, b) a $ b

bitxor(a + b, c + d) (a + b) $ (c + d)

Bitwise AND bitand(a, b) a & b

bitand(a + b, c + d) (a + b) & (c + d)

Bitwise OR bitor(a, b) a l b

bitor(a + b, c + d) (a + b) l (c + d)

Imaginary Unit sqrt(-1) im

Formatted Printing fprintf(‘%d + %.2f’, a, b) @sprintf(“%d + %.2f”, a, b)

using PyPlot

x = 0:0.05:5; x=0:0.05:5

2D Plotting y = sin(x.ˆ2); y=sin(x.ˆ2)

(example from plot(x, y); plot(x, y)

MathWorks.com) xlabel(‘Time’) xlabel(“Time”)

ylabel(‘Amplitude’) ylabel(“Amplitude”)

4

http://www.mathworks.com/products/matlab/examples.html?file=/products/demos/shipping/matlab/graf2d.html


MATLAB code Julia translation

In-Line Functions h = @(x, y) x * y h(x, y) = x * y

function [a b] = smprd(x, y) function smprd(x, y)

a = x + y; a = x + y;

Functions b = x * y; b = x * y;

[a b]

end (optional) end

function [a b] = smprd(x, y) function smprd(x, y)

while x <y while x <y

x = x + 2 x = x + 2

end end

function [c] = fun(w, z) function fun(w, z)

c = mod(w, z) c = w % z

[c]

end end

Nested Functions a = x + y; a = x + y;

And Loops if a == 5 if a == 5

a = 0 a = 0

end end

b = x * y; b = x * y;

[a b]

end (optional) end

Function Calls f f()

Without Parameters

Array Indexing M(a, b) M[a, b]

3.4 Running the Program

The Java (.java) source code and the Perl (.pl) source code must be located in the
same directory. If you are running the translator for the first time or after editing
the Java source code, enter into the terminal javac TranslatorGUI.java from
the directory in which they are located to build the class file. Enter java

TranslatorGUI to launch the program. The Perl script will be run by the Java
interface that has just been launched. Note that the Java interface and the Perl
script will be saving and deleting temporary files within the folder that contains
the source code.

If for some reason the Perl script freezes, the Java interface may continue to
wait for it until it is terminated. Terminate the Perl script; you do not need to
close or restart the Java interface.

5



4 Future Directions

I have posted the source code on GitHub. My hope is that other Julia users will
find this project as interesting as I have and help to make it a truly powerful
tool.

A good place to start improving the translator might be the list of notewor-
thy di↵erences from MATLAB in the Julia docs. Some particularly useful areas
for improvement include broadening the supported plotting functions, develop-
ing a more intelligent di↵erentiation between matrix indexing and function calls,
and incorporating the small di↵erences between how the two languages process
matrices.

It might also be interesting to compile a list of common statements and tools
in MATLAB that do not translate to Julia and which other people might find
interesting and implement.

4.1 Matrix Indexing

MATLAB unfortunately uses parentheses both to access elements of a matrix
and to pass parameters to a function. Julia, on the other hand, uses paren-
theses to pass parameters to a function and brackets for matrix indexing. It is
important that the translator be able to di↵erentiate between function calls and
matrix indexing and correctly assign brackets or parentheses. At the moment
the translator locates function definitions and initialization of possible matrices
in all of the surrounding code.

It would be helpful to incorporate the scope of the matrices and functions
into the translator’s decision, as well as the order in which the definitions appear.
This would help deal with situations in which a function and a matrix might
share a name.

It would also be helpful to collect a list of names of functions that are
available to the program without having to be defined in the source code that
is being translated, as well as those functions that output a matrix.

4.2 Plotting Functions

The plotting packages and functions are some of the most powerful tools in
MATLAB. Currently the translator only supports 2D plotting. It would be
wonderful to expand its reach to MATLAB’s other plotting capabilities wherever
they also exist in Julia.

4.3 Online Front End

In addition to improving the back end of the program, a lot of growth can be
had by working on the front end. The primary goal of this program is to break
apart some of the barriers to switching from MATLAB to Julia. The fewer
barriers there are to running the program itself, to closer we can get to that
goal.

My vision for this program is that it will be online, embedded in a web site,
and that running it will not require the user to download anything. One way
to achieve this is to upload the existing Java class file to a web site, either as
a pop-up window or an applet. Unfortunately the time that Java programs

6

https://github.com/lakras/matlab-to-julia
http://docs.julialang.org/en/latest/manual/noteworthy-differences/
http://docs.julialang.org/en/latest/manual/noteworthy-differences/


usually take to load might be prohibitive. The wait time could become another
barrier.

An alternative is to translate the Java interface into JavaScript. I have
very little experience with JavaScript or with running Perl scripts online, but I
hope that with generous help and time it could meld more seamlessly with the
browser window and take fewer steps to run.

Once the front end has been revised and put online, it would also be helpful
to the user if the program were to suggest code in the Julia translation that
could be parallelized and link to appropriate Julia docs explaining how to do
it. In addition, it would be useful if the program could highlight areas of code
that either could not be translated at all or that could not be translated with
confidence.

4.4 Other Languages

A broader, more long-term extension of this project could be to expand it to
languages other than MATLAB. While MATLAB is very popular in some fields,
such as mechanical engineering, some of the fields that are most desperate for
parallelization use languages that are very syntactically di↵erent from Julia.
Computational biology, for example, runs almost entirely on Perl. In this case
the field is locked into Perl largely out of habit and inertia. While Perl is
wonderful at pattern matching, which is a large part of the programming that
computational biologists do, it is probably not the best language for sequencing
or analyzing the human genome. However, Perl comes with many years of code
that has already been written in the lab and which can very easily be chopped up
and repurposed to save time. If these snippets of existing code could quickly be
translated into Julia, it would be much more likely that computational biologists
would be able to make the switch.

Translating into Julia from a language that is very di↵erent from it, like
Perl, would be much more di�cult than translating into Julia from MATLAB.
In this particular case I was able to achieve a lot with regular expressions, but
I think that as the source language gets farther from Julia, regular expressions
will be able to translate less and less of the code. A better solution might be
to use existing parser tools to translate the source code into an abstract syntax
tree that can then be translated into Julia. One such tool is Java’s ANTLR.
If the front-end is kept in Java, ANTLR could be used to write the back-end.
Unlike the current Perl script, this set-up would natually lend itself to adding
new source languages, and it would be comparatively easy to continue to expand
it.

5 Resources and Acknowledgements

This project gave me an exciting and unique opportunity to become closer
acquainted with Julia, MATLAB, Perl, Java, and LATEX.

I would like to thank Dr. Alan Edelman and Je↵ Bezanson for teaching me
about Julia and facilitating this project. I would also like to thank the Fall 2013
Parallel Computing class for their helpful suggestions toward the later stages of
this part of the project, during my presentation.

I also found the following resources particularly helpful:

7



• The Julia docs have very detailed explanations in addition to code ex-
amples. I was able to get a good grasp of bigger pictures in addition to
smaller details when I needed them.

• Similarly, the MathWorks website was extremely helpful for understanding
MATLAB syntax through diverse code examples.

• I used the Eclipse Java IDE for writing the front end of the program.

• I used TextWrangler to write the Perl back end.

• writeLATEX greatly simplified LATEX document creation and editing during
the process of writing this paper.

Finally, thank you to anyone who contributes to this project in the future
and helps it grow and improve. I am excited to see where you take it and I’m
glad to have your invaluable help.

8

http://docs.julialang.org/en/release-0.2/manual/introduction/
http://www.mathworks.com/
http://eclipse.org/
http://www.textwrangler.com/
https://www.writelatex.com/

	Background
	Project Goals
	Implementation
	Front End (Java)
	Back End (Perl)
	Supported Differences Between MATLAB and Julia
	Running the Program

	Future Directions
	Matrix Indexing
	Plotting Functions
	Online Front End
	Other Languages

	Resources and Acknowledgements

