
Applying Machine 
Learning to the Genome

Daniel Kang



Genome

● Base: character
● k-mer: string 

(length k)
● Genome: ~ 2.8 

billion bases



DNAse-seq



We can use 
DNAse-seq to predict 

functional genomic areas



Prior work

● Binning + smoothing



Prior work: Limitations

● Are ad-hoc
● Require hand-tuned parameters
● Require resolution/noise tradeoff
● Low statistical power
● Focuses on specific parts of the genome



Model overview

● “cis-regulatory k-mer model”
● Every k-mer has an independent effect 

everywhere it appears in the genome
● Effects add in log space (exponential effect 

in read space)
● Poisson process



Model overview



Model benefits

● Parameter free
● Genome-wide
● Testable prediction



Model: Poisson process



Inference method:
Gradient descent



Serial implementation:
Gradient descent

● Initialize parameter matrix v to 0
● Repeat until convergence:

○ Evaluate the gradient dv at v
○ Update the parameter matrix via linear 

approximation: v’ = v + ε dv



C++ threading

● pthreads
○ POSIX threads
○ Thread creation/management API

● OpenMP
○ Open Multi-Processing
○ API for shared memory multiprocessor programming

● MPI
○ Message Passing Interface
○ No shared memory model



MPI gotchas

● MPICH2 is faster than Open MPI
● MPI does not have a shared memory 

model
○ Locality aware bcast ~25% faster
○ Locality aware reduce ~5% faster

● Network communication is often the 
bottleneck



Parallel implementation: MPI

● Initialize nodes
● Initialize parameter matrix v to 0
● Repeat until convergence:

○ Send the current parameter vector to slaves
○ Each slave computes the gradient on a subset of the 

genome
○ The slaves send the gradient back to master, which 

then computes the full gradient dv
○ Master updates the parameter vector using the 

linear approximation v’ = v + ε dv



Results: Synthetic Data

AGTCT CAGAC



Results: Timings
R^2 = 0.85

NumPY implementation took ~300 minutes per iteration
C++ serial implementation took ~30 minutes per iteration



Future work

● Reduce communication time
● Further optimization
● Add features to the model



Acknowledgements

● David Gifford
● Tatsu Hashimoto
● Richard Sherwood


