
Mining massive geographic data

Jameson Toole & Yingxiang Yang!
Human Mobility and Networks Lab
MIT

The question.
• How do you build a richer “Google Maps”?

With data!
• Call Detail Records (CDRs)

• Every time you make a phone call, the network
operator stores:
• Location (either [lat,lon] or towerID)
• Timestamp
• Social Network
• Duration
• Transmission type (data, SMS, call, etc.)

With data!

• Transportation Infrastructure
• Road networks
• Transit networks (subway, bus, etc.)
• Sharing services (Hubway, ZipCar)

• Demographics
• Census
• Surveys

Now we need:

• A data pipeline to…
• clear data 1TB+ of digital bread crumbs
• transform and extract relevant features
• merge multiple data sources (CDR + Census)

• Algorithms to…
• find correlations
• measure system behavior

Use cases

Selectivity

Complexity

Big
Geograph

Data
Inventory
Analytics

Twitter Google
Maps

What we want to do.

Massive, parallel routing.

Generate the OD Matrix

Understanding Road Usage Patterns in Urban Areas by P. Wang et al., Scientific Reports, 2012

Page 7 / 30

location is observed at 6:00pm). To more accurately extract users’ travel demands between zones

(mobile phone towers’ service areas for the Bay Area and the census tracts for the Boston Area), we

only record displacements occurring within a short time window. However, the time window we select

must be long enough in order to ensure that enough travel demand information is extracted. In our

modelling framework, we set the time window to one hour and define a trip as a displacement occurring

within one hour in each time period (i.e. Morning Period, Noon & Afternoon Period, etc). Fig. S4

illustrates a mobile user’s time and location records, using the presented approach; in this example two

trips are detected.

Figure S4. Illustration of trip definition from a mobile phone user’s billing record. Black lines represent
phone usage records, for each of them the time and the associated towers (A-D) routing the service are
recorded. Changes of locations C->D are not defined as a trip, because they do not occur within a
one-hour time window. Two trips are detected: from 8:00am tower A to 8:50am tower B and from
9:30am tower B to 9:50am tower C.

3. Definition of transient OD:

In the mobile phone data, a user’s location information is lost when he/she does not use his/her

phone. As Fig. S5 shows, a user is observed to move from zone B to zone C (he/she has calls or text

messages in zone B and zone C), but his/her initial origin (O) and final destination (D) may actually be

located in zone A and zone D. Thus, in such cases we lose a segment of the trip information (denoted by

the dashed blue lines). Even if we only capture the transient origin and destination with the phones, this

still allows us to capture a large portion of the road usage. Thus, we put forward the transient origin

destination (t-OD) matrix, which requires only mobile phone data as input, to efficiently and

economically capture the detailed travel demand information.

Generate the OD Matrix

OD Flows:
s, t, flow!
0, 1, 20
0, 2, 30
1, 2, 10

Route between source and target
function A*(start,goal)
 closedset := the empty set // The set of nodes already evaluated.
 openset := {start} // The set of tentative nodes to be evaluated,
 came_from := the empty map // The map of navigated nodes. !
 g_score[start] := 0 // Cost from start along best known path.
 // Estimated total cost from start to goal through y.
 f_score[start] := g_score[start] + heuristic_cost_estimate(start, goal)

 while openset is not empty
 current := the node in openset having the lowest f_score[] value
 if current = goal
 return reconstruct_path(came_from, goal)

 remove current from openset
 add current to closedset
 for each neighbor in neighbor_nodes(current)
 tentative_g_score := g_score[current] + dist_between(current,neighbor)
 tentative_f_score := tentative_g_score + heuristic_cost_estimate(neighbor, goal)
 if neighbor in closedset and tentative_f_score >= f_score[neighbor]
 continue !
 if neighbor not in openset or tentative_f_score < f_score[neighbor]
 came_from[neighbor] := current
 g_score[neighbor] := tentative_g_score
 f_score[neighbor] := tentative_f_score
 if neighbor not in openset
 add neighbor to openset !
 return failure

A* algorithm!
• Best-first search
• Heuristic cost function f(x) to

guide search
• Known component, g(x)
• Estimated component h(x)
• Generalized Dijkstra’s algorithm

http://en.wikipedia.org/wiki/A*_search_algorithm

Incremental Traffic Assignment

ITA:!
• Users aren’t completely independent
• Externalities of travel mean that an individuals route choice affects the

choices of others
• To account for this we divide our flows into increments:

• Route the first 20% of users
• Update costs on road segments factoring in how many users were

assigned to a road
• Route the next 20% of users with updated costs (paths may change)

What we want to do.

Understanding Road Usage Patterns in Urban Areas by P. Wang et al., Scientific Reports, 2012

Which level to introduce
parallelism?

!

• User centric
• Because in many cases, the analysis for a single user is independent from

the others, we can simply run the same algorithm for different users
concurrently.

• Algorithmic
• Write parallel algorithms that distribute the computation related to a single

user or feature to multiple workers

Some options…

• A database management system:
• Pros: Easy (standard) query language, transactions support concurrent

use, easy to build an API or web application
• Cons: Slow, hard to implement complex user defined functions

• A stand-alone software package
• Pros: Fast, flexible
• Cons: Difficult to share, opaque to system users

Database management system.

• Postgres + PostGIS + pgRouting
• Open Source
• Postgres is mature and reliable
• PostGIS adds spatial features like indexing and complex joins
• pgRouting has routing for spatial networks

• Parallelization Strategies
• Partition data across many machines
• Make many concurrent queries to the database and manage updates

using transactions.

Database management system.

• Road Network
• Schema:

• edge_ID
• source
• target
• cost
• geometry

• System
• Drivers connect python to

the database.
• Read a portion of the OD list

and execute SQL Routing
queries storing paths along
the way.

• Pause to aggregate counts
per road segment and
update costs

Database management system.

Shortest Geographic
Distance

Shortest Travel Time

Database management system.
Google: 30min
pgrouting (out of box): 22min

Database management system.

The problem…it’s SLOW!

.05! x! 600,000! x! 5 = 42 hours!
sec/route routes increments

Multithreaded C++ implementation

• System
• Weighted-directed network class to store network
• A class to store and split OD lists for parallel

processing.
• A multithreaded routine to execute multiple A*

searchers concurrently.
• Makes heavy use of the C++ Boost Graph Library

• To the code!

Multithreaded C++ implementation

Now it’s over 6000x faster, but there is a lot more code!

.00005!x! 600,000! x! 5 = 150 seconds!
sec/route routes increments

Multithreaded C++ implementation

544,000 unique pairs. 22,000 edges. 10,000 nodes.

What do we do with all of these paths?

• Aggregate them on the roads and look for patterns!
• Visualize them! (must be from MIT IP)

• http://ec2-54-200-71-200.us-
west-2.compute.amazonaws.com:7053/roads/

ec2-54-200-71-200.us-west-2.compute.amazonaws.com:7053/roads/

