Mining massive geographic data

Jameson Toole & Yingxiang Yang
Human Mobility and Networks Lab
MIT



Ihe question.

How do you

build a richer “Google Maps”?

N - -
N
. o
afll 5’0,,0 ~ ] A4
”:‘mS \
Fast Slow N Chelsea
! N Iskand £nd River
Foss Park Ceny,
v o ff t W Ay
Live traffic jomerville v
P'J,/Sr J’()u\‘” s
e Typical traffic .
! oF
Mo Field Dog Park
! Monday, 7:30 AM Yepatfar
"‘ e
! (28) Central Square
| ' i
| SMTWTFS « 9 &
£ast Boston
¢ 5 Lechmere Canal Park
Blingy o, z
8 England C
@ mornal Prers Park
ad
" A
:"7\(., %ﬁn{;p«wr
p & »
S 3 /
nick St_Brighton F e 8 & j
’ ‘rll?f a? 3 Q‘.ﬂ ’.V
St e a N & >
it Ave T 8) pe Fenray/Kenmore £ Marine Industral Park
Lon S0
(3) 7 &
2 ‘45-8 e South Boston E1st St
i N Q) - >
Parsons | m;}d @ \ Az e & Broscway Marine Park
’ / %, e &
/'“o - ) -f"’ (= . \

MDC Park




With datal

» Call Detail Records (CDRs)

* Every time you make a phone call, the network
operator stores:
 Location (either [lat,lon] or towerlD)
 Timestamp
e Social Network
e Duration

e Transmission type (data, SMS, call, etc.)



With datal

e [ransportation Infrastructure

 Road networks
« Transit networks (subway, bus, etc.)

e Sharing services (Hubway, ZipCar)
* Demographics

e (Census

e Surveys



Now we need:

* A data pipeline to...

e clear data 1TB+ of digital bread crumbs
e transform and extract relevant features

 merge multiple data sources (CDR + Census)

* Algorithms to...

e find correlations

e measure system behavior



Use cases

Twitter Google
Maps
- » Complexity
Big
Inventory Geograph
Analytics v Data

Selectivity



What we want to do.

Massive, parallel routing.



(Generate the OD Matrix

\ . 8 P r \\

/‘/
= -
Tower A —° 5 B 8L ¢ C D
‘Morning Pen'od‘ I ‘ ‘ Noon & Afternoon Period ‘
Time 8:00am 8:50am 9:30am 9:50am 10:30am 12:00am

Understanding Road Usage Patterns in Urban Areas by P Wang et al., Scientific Reports, 2012



Generate the OD Matrix

OD Flows:
s, t, flow
0, 1, 20

0, 2, 30

1. 2,10



Route between source and target

A* algorithm

function A*(start,goal)

° BeSt'ﬂrSt SearCh closedset := the empty set // The set of nodes already evaluated.
‘ot ' openset := {start} // The set of tentative nodes to be evaluated,
* HeUFIStIC cost fUﬂCtIOn f(X) to came_from := the empty map // The map of navigated nodes.

uide search
g g_score[start] := 0 // Cost from start along best known path.
e Known CompOﬂent, g(X) /] Estimated total cost from start to goal through v.

o Estimated CompOﬂent h(X) f_score[start] := g_score[start] + heuristic_cost_estimate(start, goal)
e (eneralized Dijkstra’s algorithm while openset is not empty

current := the node in openset having the lowest f_score[] value
if current = goal

return reconstruct_path(came_from, goal)
fla)=1,5 + 4
fld)=2 + 4,5

remove current from openset
add current to closedset
for each neighbor in neighbor_nodes(current)
tentative_g_score := g_score[current] + dist_between(current,neighbor)
tentative_f_score := tentative_g_score + heuristic_cost_estimate(neighbor, goal)
if neighbor in closedset and tentative_f_score >= f_score[neighbor]
continue

if neighbor not in openset or tentative_f_score < f_score[neighbor]
came_from[neighbor] := current
g_score[neighbor] := tentative_g_score
f_score[neighbor] := tentative_f_score
if neighbor not in openset
add neighbor to openset

return failure

http://en.wikipedia.org/wiki/A*_search_algorithm



Incremental Traffic Assignment

ITA:
« Users aren’t completely independent
e Externalities of travel mean that an individuals route choice affects the
choices of others
e Jo account for this we divide our flows into increments:
* Route the first 20% of users
« Update costs on road segments factoring in how many users were
assigned to a road
* Route the next 20% of users with updated costs (paths may change)



What we want to do.

#Census Tracts
1-10
— 11-20
— 21-30
— 31-40
> 40
N/A

Census Tract Sources for
I E Hamilton Ave.

Understanding Road Usage Patterns in Urban Areas by P Wang et al., Scientific Reports, 2012



Which level to introduce
parallelism?

e User centric

 Because in many cases, the analysis for a single user is independent from
the others, we can simply run the same algorithm for different users

concurrently.

* Algorithmic

 Write parallel algorithms that distribute the computation related to a single
user or feature to multiple workers



Some options...

* A database management system:

 Pros: Easy (standard) query language, transactions support concurrent
use, easy to build an APl or web application

 (Cons: Slow, hard to implement complex user defined functions

* A stand-alone software package

e Pros: Fast, flexible

« (Cons: Difficult to share, opague to system users



Database management system.

* Postgres + PostGIS + pgRouting

« QOpen Source
 Postgres is mature and reliable
 PostGIS adds spatial features like indexing and complex joins

 pgRouting has routing for spatial networks

» Parallelization Strategies

e Partition data across many machines

« Make many concurrent queries to the database and manage updates
using transactions.



Database management system.

e System

* Road Network |
* Drivers connect python to

* Schema: the database.
edge_ID * Read a portion of the OD list
source and execute SQL Routing
target gueries storing paths along
cost the way.
geometry * Pause to aggregate counts

per road segment and
update costs



Database management system.

Shortest Geographic
Distance




Database management system.

Google: 30min
pgrouting (out of box): 22min

iy = 2 £ . X oS
O 5512 Abu Ubaydah Amir lbn al Jarrah, As Saadah ‘ :.' ‘o .-

| @ 3658 Al imam Saud Ibn Abdul Aziz Rd, Al Muruj, A "
+ Route options 3 .
Drive via Abu Ubaydah Amir Ibn al Jarrsh - 27.5 km 30 min A B LY e (! g‘,;‘ i ‘ o . 5 ’o:;.

3658 Allimam. SaudlIbny ¢ Ny > '!‘.Ai_ 7

AN 10 .
AU RAZIZIRA PAIIM Uy . ALY 2%~ . .
4"?,, - J A A Drive 30 min
&0 \ o ’ — W Bl 27.5km

o 22121Abu LJ[).)y;!.lQ;Armr
ibnlall)arrahYasisaadah
T | ETTED

o



Database management system.

The problem...it's SLOW!

.05 x 600,000 x 5 =42 hours!

sec/route routes iIncrements



Multithreaded C++ implementation

e System
* Weighted-directed network class to store network

* A class to store and split OD lists for parallel
processing.

* A multithreaded routine to execute multiple A*
searchers concurrently.

 Makes heavy use of the C++ Boost Graph Library
To the code!



Multithreaded C++ implementation

Now it's over 6000x faster, but there is a lot more code!

.00005x 600,000 x 5 =150 seconds!

sec/route routes increments



Multithreaded C++ implementation

544 000 unigue pairs. 22,000 edges. 10,000 nodes.

Routing Performance vs # Threads

40 53

30

10

Run Time (seconds)
o

1 4 7 10 13

# Threads



What do we do with all of these paths?

* Aggregate them on the roads and look for patterns!
* Visualize them! (must be from MIT IP)

e http://ec2-54-200-7/1-200.us-
west-2.compute.amazonaws.com:/053/roads/



ec2-54-200-71-200.us-west-2.compute.amazonaws.com:7053/roads/

